Чистые стратегии игрока. Оптимальные смешанные стратегии

Математические методы и модели в экономике

Матричные игры

Введение

В экономической практике часто возникают ситуации, в которых различные стороны преследуют различные цели. Например, отношения между продавцом и покупателем, поставщиком и потребителем, банком и вкладчиком и т.д. Такие конфликтные ситуации возникают не только в экономике, но в других видах деятельности. Например, при игре в шахматы, шашки, домино, лото и т.д.

Игра – это математическая модель конфликтной ситуации с участием не менее двух лиц, использующих несколько различных способов для достижения своих целей. Игра называется парной, если в ней участвуют два игрока. Игра называется антагонистической, если выигрыш одного игрока равен проигрышу другого. Следовательно, для задания игры достаточно задать величины выигрышей одного игрока в различных ситуациях.

Любой способ действия игрока в зависимости от сложившейся ситуации называется стратегией. Каждый игрок располагает определенным набором стратегий. Если число стратегий конечно, то игра называется конечной, в противном случае – бесконечной . Стратегии называются чистыми, если каждый из игроков выбирает только одну стратегию определенным, а не случайным образом.

Решение игры заключается в выборе такой стратегии, которая удовлетворяет условию оптимальности. Это условие состоит в том, что один игрок получает максимальный выигрыш , если второй придерживается своей стратегии. И наоборот, второй игрок получает минимальный проигрыш , если первый из игроков придерживается своей стратегии. Такие стратегии называются оптимальными . Таким образом, цель игры – это определение оптимальной стратегии для каждого игрока.

Игра в чистых стратегиях

Рассмотрим игру с двумя игроками А и В. Предположим, что игрок А имеет m стратегий А 1 , А 2 , …, А m , а игрок В имеет n стратегий B 1 , B 2 , … ,B n . Будем считать, что выбор игроком А стратегии А i , а игроком В стратегии B j однозначно определяет исход игры, т.е. выигрыш a ij игрока А и выигрыш b ij игрока В. Здесь i=1,2,…,m, j=1,2,…,n.

Простейшей игрой с двумя игроками является антагонистическая игра, т.е. игра, в которой интересы игроков прямо противоположны. В этом случае выигрыши игроков связаны равенством

b ij =-a ij

Это равенство означает, что выигрыш одного из игроков равен проигрышу другого. В этом случае достаточно рассматривать лишь выигрыши одного из игроков, например, игрока А.

Каждой паре стратегий А i и B j соответствует выигрыш a ij игрока А. Все эти выигрыши удобно записывать в виде так называемой платежной матрицы

Строки этой матрицы соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. В общем случае такая игра называется (m×n)-игрой.


Пример 1. Два игрока А и В бросают монету. Если стороны монеты совпадают, то выигрывает А , т.е. игрок В платит игроку А некоторую сумму, равную 1, а если не совпадают, то выигрывает игрок В, т.е. наоборот, игрок А платит игроку В эту же сумму, равную 1. Сформировать платежную матрицу.

Решение. По условию задачи

Смешанной стратегией SA игрока А называется применение чистых стратегий A1, A2, ..., Am с вероятностями p1, p2, ..., pi, ..., pm причем сумма вероятностей равна 1: Смешанные стратегии игрока А записываются в виде матрицы или в виде строки SA = (p1, p2, ..., pi, ..., pm) Аналогично смешанные стратегии игрока В обозначаются: , или, SB = (q1, q2, ..., qi, ..., qn), где сумма вероятностей появления стратегий равна 1: Чистые стратегии можно считать частным случаем смешанных и задавать строкой, в которой 1 соответствует чистой стратегии. На основании принципа минимакса определяется оптимальное решение (или решение) игры: это пара оптимальных стратегий S*A , S*B в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры v. Цена игры удовлетворяет неравенству: ? ? v ? ? (3.5) где? и? - нижняя и верхняя цены игры. Справедлива следующая основная теорема теории игр - теорема Неймана. Каждая конечная игра имеет по крайней мере одно оптимальное решение, возможно, среди смешанных стратегий. Пусть S*A = (p*1, p*2, ..., p*i, ..., p*m) и S*B = (q*1, q*2, ..., q*i, ..., q*n) - пара оптимальных стратегий. Если чистая стратегия входит в оптимальную смешанную стратегию с отличной от нуля вероятностью, то она называется активной. Справедлива теорема об активных стратегиях: если один из игроков придерживается своей оптимальной смешанной стратегии, то выигрыш остается неизменным и равным цене игры v, если второй игрок не выходит за пределы своих активных стратегий. Эта теорема имеет большое практическое значение - она дает конкретные модели нахождения оптимальных стратегий при отсутствии седловой точки. Рассмотрим игру размера 2×2, которая является простейшим случаем конечной игры. Если такая игра имеет седловую точку, то оптимальное решение - это пара чистых стратегий, соответствующих этой точке. Игра, в которой отсутствует седловая точка, в соответствии с основной теоремой теории игр оптимальное решение существует и определяется парой смешанных стратегий S*A = (p*1, p*2) и S*B = (q*1, q*2). Для того чтобы их найти, воспользуемся теоремой об активных стратегиях. Если игрок А придерживается своей оптимальной стратегии S"A, то его средний выигрыш будет равен цене игры v, какой бы активной стратегией ни пользовался игрок В. Для игры 2×2 любая чистая стратегия противника является активной, если отсутствует седловая точка. Выигрыш игрока А (проигрыш игрока В) - случайная величина, математическое ожидание (среднее значение) которой является ценой игры. Поэтому средний выигрыш игрока А (оптимальная стратегия) будет равен v и для 1-й, и для 2-й стратегии противника. Пусть игра задана платежной матрицей Средний выигрыш игрока А, если он использует оптимальную смешанную стратегию, а игрок В - чистую стратегию B1 (это соответствует 1-му столбцу платежной матрицы Р), равен цене игры v: a11 p*1+ a21 p*2= v. Тот же средний выигрыш получает игрок А, если 2-й игрок применяет стратегию B2, т.е. a12 p*1+ a22 p*2= v. Учитывая, что p*1+ p*2= 1, получаем систему уравнений для определения оптимальной стратегии S"A и цены игры v: (3.6) Решая эту систему, получим оптимальную стратегию (3.7) и цену игры (3.8) Применяя теорему об активных стратегиях при отыскании SВ*- оптимальной стратегии игрока В, получаем, что при любой чистой стратегии игрока А (А1 или А2) средний проигрыш игрока В равен цене игры v, т.е. (3.9) Тогда оптимальная стратегия определяется формулами: (3.10)

Описание биматричной игры . Все игры которые были рассмотрены, относились к классу игр с нулевой суммой . Однако ряд конфликтных ситуаций, складывающихся в ходе действий, характерны тем, что выигрыш одной стороны не равен в точности проигрышу другой. Теоретико-игровыми моделями подобных ситуаций являются некооперативные игры с ненулевой суммой. Такие игры называются биматричными , потому что задание каждой такой игры сводится к заданию двух матриц и одинаковой формы: .

Процесс биматричной игры состоит в независимом выборе игроком I числа а игроком II - числа , после чего игрок I получает выигрыш , а игрок II - выигрыш .

Номера строк матриц и назовем чистыми стратегиями игрока I, а номера столбцов этих матриц – чистыми стратегиями игрока II. Тогда пары вида будут являться ситуациями в чистых стратегиях биматричной игры , а числа и - выигрышами I и II игроков в ситуации . Соответственно, распределение вероятностей применения чистых стратегий игрока I - и игрока II - будем называть смешанными стратегиями . Тогда пары вида представляют ситуации биматричной игры в смешанных стратегиях , а числа и являются математическими ожиданиями выигрыша I и II игроков.

Ситуацией равновесия биматричной игры в смешанных стратегиях будем называть такую пару , при которой:

(8.2)
,

где - математическое ожидание выигрыша игрока I;

Математическое ожидание выигрыша игрока II;

Оптимальная смешанная стратегия игрока I;

Оптимальная смешанная стратегия игрока II.

Задача

Построение и решение биматричной игры . Предположим, что противолодочная подводная лодка страны осуществляет поиск ракетной подводной лодки государства , которая маневрирует в строго определенной части района боевого патрулирования. В остальной части этого района действует противолодочная подводная лодка , которая осуществляет поиск противолодочной подводной лодки . Пусть каждая противолодочная лодка для обнаружения противника может использовать свою гидроакустическую станцию или в активном режиме, включая ее периодически, или только в пассивном режиме, выполняя непрерывный поиск .

Как противолодочная подводная лодка , так и ракетная подводная лодка с обнаружением сигналов гидролокатора может уклониться от противника. Однако периодичность включения гидролокатора делает обнаружение возможным, но недостоверным.

В подобной конфликтной ситуации одним из игроков является противолодочная подводная лодка , а другим - противолодочная подводная лодка .Очевидно, ракетная подводная лодка не может быть игроком, так как она имеет только один способ действий, заключающийся в скрытом маневрировании и выполнении уклонения с обнаружением сигналов гидролокаторов.

Характерным здесь является то, что каждый из игроков преследует разные, но не противоположные цели. Действительно, целью противолодочной подводной лодки является обнаружение ракетной подводной лодки, а целью противолодочной подводной лодки - обнаружение противолодочной подводной лодки . Поэтому для оценки достижения цели каждым из игроков в зависимости от выбранных способов действий (стратегий) необходимо иметь два критерия эффективности и соответственно две функции выигрыша. Тогда моделью подобной конфликтной ситуации будет конечная игра с ненулевой суммой, описываемая двумя матрицами одинаковой формы и , называемая биматричной.

Примем за критерий эффективности противолодочной подводной лодки (игрок I) вероятность обнаружения ракетной подводной лодки , а за критерий эффективности противолодочной подводной лодки (игрок II) – вероятность обнаружения противолодочной подводной лодки . Тогда биматричная игра будет задана матрицей (рисунок 9.a) и матрицей (рисунок 9.b).


Рис. 9.a.


Рис. 9.b.

Где - использование активного режима;

Использование пассивного режима.

теория игра стратегия смешанная

Смешанные стратегии

Если в матричной игре отсутствует седловая точка в чистых стратегиях, то находят верхнюю и нижнюю цены игры. Они показывают, что игрок 1 не получит выигрыша, превосходящего верхнюю цену игры, и что игроку 1 гарантирован выигрыш, не меньший нижней цены игры.

Смешанная стратегия игрока - это полный набор его чистых стратегий при многократном повторении игры в одних и тех же условиях с заданными вероятностями. Подведем итоги сказанного и перечислим условия применения смешанных стратегий:

  • * игра без седловой точки;
  • * игроки используют случайную смесь чистых стратегий с заданными вероятностями;
  • * игра многократно повторяется в сходных условиях;
  • * при каждом из ходов ни один игрок не информирован о выборе стратегии другим игроком;
  • * допускается осреднение результатов игр.

Применяются следующие обозначения смешанных стратегий.

Для игрока 1 смешанная стратегия, заключающаяся в применении чистых стратегий А 1 , А 2 , ..., А т с соответствующими вероятностями р 1 , р 2, ..., р т.

Для игрока 2

q j -- вероятность применения чистой стратегии B j .

В случае когда р i = 1, для игрока 1 имеем чистую стратегию

Чистые стратегии игрока являются единственно возможными несовместными событиями. В матричной игре, зная матрицу А (она относится и к игроку 1, и к игроку 2), можно определить при заданных векторах и средний выигрыш (математическое ожидание эффекта) игрока 1:

где и - векторы;

p i и q i - компоненты векторов.

Путем применения своих смешанных стратегий игрок 1 стремится максимально увеличить свой средний выигрыш, а игрок 2 - довести этот эффект до минимально возможного значения. Игрок 1 стремится достигнуть

Игрок 2 добивается того, чтобы выполнялось условие

Обозначим и векторы, соответствующие оптимальным смешанным стратегиям игроков 1 и 2, т.е. такие векторы и, при которых будет выполнено равенство

Цена игры - средний выигрыш игрока 1 при использовании обоими игроками смешанных стратегий. Следовательно, решением матричной игры является:

  • - оптимальная смешанная стратегия игрока 1;
  • - оптимальная смешанная стратегия игрока 2;

Цена игры.

Смешанные стратегии будут оптимальными (и), если образуют седловую точку для функции т.е.

Существует основная теорема математических игр.

Для матричной игры с любой матрицей А величины

существуют и равны между собой: = = .

Следует отметить, что при выборе оптимальных стратегий игроку 1 всегда будет гарантирован средний выигрыш, не меньший чем цена игры, при любой фиксированной стратегии игрока 2 (и, наоборот, для игрока 2). Активными стратегиями игроков 1 и 2 называют стратегии, входящие в состав оптимальных смешанных стратегий соответствующих игроков с вероятностями, отличными от нуля. Значит, в состав оптимальных смешанных стратегий игроков могут входить не все априори заданные их стратегии.

Решить игру - означает найти цену игры и оптимальные стратегии. Рассмотрение методов нахождения оптимальных смешанных стратегий для матричных игр начнем с простейшей игры, описываемой матрицей 22. Игры с седловой точкой специально рассматриваться не будут. Если получена седловая точка, то это означает, что имеются невыгодные стратегии, от которых следует отказываться. При отсутствии седловой точки можно получить две оптимальные смешанные стратегии. Как уже отмечалось, эти смешанные стратегии записываются так:

Значит, имеется платежная матрица

a 11 p 1 + a 21 p 2 = ; (1.16)

a 12 p 1 + a 22 p 2 = ; (1.17)

p 1 + p 2 = 1. (1.18)

a 11 p 1 + a 21 (1 - p 1) = a 12 p 1 + a 22 (1 - p 1); (1.19)

a 11 p 1 + a 21 - a 21 p 1 = a 12 p 1 + a 22 - a 22 p 1 , (1.20)

откуда получаем оптимальные значенияи:

Зная и, находим:

Вычислив, находим и:

a 11 q 1 + a 12 q 2 = ; q 1 + q 2 = 1; (1.24)

a 11 q 1 + a 12 (1 - q 1) = . (1.25)

при a 11 a 12 . (1.26)

Задача решена, так как найдены векторы и цена игры. Имея матрицу платежей А, можно решить задачу графически. При этом методе алгоритм решения весьма прост (рис. 2.1).

  • 1. По оси абсцисс откладывается отрезок единичной длины.
  • 2. По оси ординат откладываются выигрыши при стратегии А 1 .
  • 3. На линии, параллельной оси ординат, в точке 1 откладываются выигрыши при стратегии a 2 .
  • 4. Концы отрезков обозначаются для a 11 -b 11 , a 12 -b 21 , a 22 -b 22 , a 21 -b 12 и проводятся две прямые линии b 11 b 12 и b 21 b 22 .
  • 5. Определяется ордината точки пересечения с. Она равна. Абсцисса точки с равна р 2 (р 1 = 1 - р 2).

Рис. 1.1.

Данный метод имеет достаточно широкую область приложения. Это основано на общем свойстве игр тп, состоящем в том, что в любой игре тп каждый игрок имеет оптимальную смешанную стратегию, в которой число чистых стратегий не больше, чем min(m, n). Из этого свойства можно получить известное следствие: в любой игре 2п и т2 каждая оптимальная стратегия и содержит не более двух активных стратегий. Значит, любая игра 2п и т2 может быть сведена к игре 22. Следовательно, игры 2п и т2 можно решить графически. Если матрица конечной игры имеет размерность тп, где т > 2 и п > 2, то для определения оптимальных смешанных стратегий используется линейное программирование.