Теория игр. Платёжная матрица

ПРАКТИЧЕСКАЯ РАБОТА №3

Модели теории игр

Понятие об игровых моделях

Теория игр занимается разработкой различного рода рекомендаций по принятию решений в условиях конфликтной ситуации. Формируя конфликтные ситуации математически, их можно представить как игру двух, трёх и более игроков, каждый из которых преследует цель максимизации своего выигрыша за счет другого игрока. Математическая модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, – игроками , а исход конфликта – выигрышем . Для каждой формализованной игры вводятся правила , т.е. система условий, определяющая:

1. варианты действий игроков;

2. объем информации каждого игрока о поведении партнеров;

3. выигрыш, к которому приводит каждая совокупность действий.

Как правило, выигрыш может быть задан количественно (например, проигрыш – 0, выигрыш – 1, ничья – ½). Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Игра называется игрой с нулевой суммой , если выигрыш одного из игроков равен проигрышу другого. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход – сознательный выбор игроком одного из возможных действий (ход в шахматной игре), случайный ход – случайно выбранное действие (выбор карты из перетасованной колоды).

Стратегией игрока называется совокупность правил, определяющих выбор его действия при при каждом личном ходе в зависимости от сложившейся ситуации. Игра называется конечной , если у игрока имеется конечное число стратегий, и бесконечной – в противном случае.

Для того, чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получить максимальный выигрыш , когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Целью теории игр является определение оптимальной стратегии для каждого игрока . При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Платежная матрица. Нижняя и верхняя цена игры

Рассмотрим парную конечную игру. Пусть игрок А располагает m личными стратегиями, которые обозначим А 1 , А 2 ,…,А m . Пусть у игрока B имеется n личных стратегий, обозначим их B 1 , B 2 ,…,B n . Говорят, что игра имеет размерность m ´ n . В результате выбора игроками любой пары стратегий А i и B j однозначно определяется исход игры, т.е. выигрыш a ij игрока А (положительный или отрицательный) и проигрыш (-a ij ) игрока В . Матрица Р=(a ij) , элементами которой являются выигрыши, соответствующие стратегиям А i и B j , называется платежной матрицей или матрицей игры .

B j A i B 1 B 2 B n
A 1 a 11 a 12 a 1n
A 2 a 21 a 22 a 2n
A m a m1 a m 2 a mn

Пример – игра «Поиск»

Игрок А может спрятаться в убежище 1 – обозначим эту стратегию за А 1 или в убежище 2 – стратегия А 2 . Игрок В может искать первого игрока в убежище 1 –стратегия В 1 , либо в убежище 2 – стратегия В 2 . Если игрок А находится в убежище 1 и его там обнаруживает игрок В , т.е. осуществляется пара стратегий (А 1 ,В 1) , то игрок А платит штраф, т.е. a 11 =–1. Аналогично получаем a 22 =–1. Очевидно, что стратегии (А 1 ,В 2) и (А 2 ,В 1) дают игроку А выигрыш 1, поэтому a 12 =a 21 =1. Таким образом, получаем платежную матрицу

Рассмотрим игру m ´ n с матрицей Р=(a ij) и определим наилучшую среди стратегий игрока А . Выбирая стратегию А i , игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий В j , для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А ).

Обозначим через a i наименьший выигрыш игрока А при выборе им стратегии А i для всех возможных стратегий игрока В (наименьшее число в i -й строке платежной матрицы), т.е. .

Среди всех чисел a i выберем наибольшее: . Назовем a нижней ценой игры , или максимальным выигрышем (максимином ). Это гарантированный выигрыш игрока А при любой стратегии игрока В . Следовательно, .

Стратегия, соответствующая максимину, называется максиминной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для A. Обозначим .

Среди всех чисел выберем наименьшее иназовем b верхней ценой игры , или минимаксным выигрышем (минимаксом ). Это гарантированный проигрыш игрока В при любой стратегии игрока А . Следовательно, .

Стратегия, соответствующая минимаксу, называется минимаксной стратегией . Принцип, диктующий игрокам выбор наиболее осторожных минимаксной и максиминной стратегий, называется принципом минимакса .

Статистические игры

Во многих задачах, приводящихся к игровым, неопределенность вызвана отсутствием информации об условиях, в которых осуществляется действие. Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности, которую принято называть «природой». Такие игры называют играми с природой (статистическими играми).

Задача

После нескольких лет эксплуатации промышленное оборудование оказывается в одном из следующих состояний: В 1 – оборудование может использоваться в очередном году после профилактического ремонта; В 2 – для безаварийной работы оборудования в дальнейшем следует заменить отдельные его детали и узлы; В 3 – оборудование требует капитального ремонта или замены.

В зависимости от сложившейся ситуации В 1 ,В 2 ,В 3 руководство предприятия может принять такие решения: А 1 – отремонтировать оборудование силами заводских специалистов, что требует соответствующих затрат а 1 =6, а 2 =10, а 3 =15 ден.ед; А 2 – вызвать специальную бригаду ремонтников, расходы в этом случае составят b 1 =15, b 2 =9, b 3 =18 ден.ед; А 3 – заменить оборудование новым, реализовав устаревшее оборудование по его остаточной стоимости. Совокупные затраты в результаты этого мероприятия будут равны соответственно с 1 =13, с 2 =24, с 3 =12 ден.ед.

Задание

1. Придав описанной ситуации игровую схему, выявить ее участников, указать возможные чистые стратегии сторон.

2. Составить платежную матрицу, пояснив смысл элементов a ij матрицы (почему они отрицательные?).

3. Выяснить, какое решение о работе оборудования в предстоящем году целесообразно рекомендовать руководству предприятия, чтобы минимизировать потери при следующих предположениях: а) накопленный на предприятии опыт эксплуатации аналогичного оборудования показывает, что вероятности указанных состояний оборудования равны соответственно q 1 =0,15; q 2 =0,55; q 3 =0,3 (примените критерий Байеса); б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны (примените критерий Лапласа); в) о вероятности оборудования ничего определенного сказать нельзя (примените критерии Вальда, Сэвиджа, Гурвица). Значение параметра g=0,8 в критерии Гурвица задано.

Решение

1) Описанная ситуация представляет собой статистическую игру.

В качестве статистика выступает руководство предприятия, которое может принять одно из следующих решений: отремонтировать оборудование своими силами (стратегия А 1), вызвать ремонтников (стратегия А 2); заменить оборудование новым (стратегия А 3).

Второй играющей стороной – природой будем считать совокупность факторов, влияющих на состояние оборудования: оборудование может использоваться после профилактического ремонта (состояние В 1); нужно заменить отдельные узлы и детали оборудования (состояние В 2): потребуется капитальный ремонт или замена оборудования (состояние В 3).

2) Составим платежную матрицу игры:

Элемент платежной матрицы а ij показывает затраты руководства предприятия, если при выбранной стратегии А i оборудование окажется в состоянии В j . Элементы платежной матрицы отрицательны, так как при любой выбранной стратегии руководству предприятия придется нести расходы.

а) накопленный на предприятии опыт эксплуатации аналогично оборудования показывает, что вероятности состояний оборудования равны q 1 =0,15; q 2 =0,55; q 3 =0,3.

Платежную матрицу представим в виде:

Стратегии статистика, A i Состояния природы B j
B 1 B 2 B 3
A 1 -6 -10 -15 -10,9
A 2 -15 -9 -18 -12,6
A 3 -13 -24 -12 -18,75
q j 0,15 0,55 0,3

где , (i=1,3)

По критерию Байеса за оптимальную принимается та чистая стратегия А i , при которой максимизируется средний выигрыш статистика, т.е. обеспечивается =max .

Оптимальной стратегией по Байесу является стратегия А 1 .

б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны, т.е. = 1/3.

Средние выигрыши равны:

1/3*(-6-10-15) = -31/3 » -10,33;

1/3*(-15-9-18) = -42/3 = -14;

1/3*(-13-24-12) = -49/3 » -16,33.

Оптимальной стратегией по Лапласу является стратегия А 1 .

в) о вероятностях оборудования нельзя сказать ничего определенного.

По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.

.

= max (-15, -18, -24) = -15.

Таким образом, оптимальной является стратегия А 1 .

Построим матрицу рисков , где .

Рассмотрим парную конечную игру. Пусть игрок А располагает т личными стратегиями, которые обозначим

Пусть у игрока В имеется п личных стратегий, обозначим их. Говорят, что игра имеет размерность т х п.

В результате выбора игроками любой пары стратегий однозначно определяется исход игры, т.е. выигрыш а ;. игрока А (положительный или отрицательный) и проигрыш (-ау) игрока В. Предположим, что значения а.. известны для любой пары стратегий (А:, В ;.). Матрица Р = (a..), i = = 1, 2, ..., m j = 1, 2, ..., п, элементами которой являются выигрыши, соответствующие стратегиям А. и Bj, называется платежной матрицей, или матрицей игры. Общий вид такой матрицы представлен в табл. 12.1. Строки этой таблицы соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В.

Таблица 12.1

Составим платежную матрицу для следующей игры.

12.1. Игра "поиск".

Игрок А может спрятаться в одном из двух убежищ (I и II); игрок В ищет игрока А, и если найдет, то получает штраф 1 ден. ед. от А, в противном случае платит игроку А 1 ден. ед. Необходимо построить платежную матрицу игры.

Р е ш е н и с. Для составления платежной матрицы следует проанализировать поведение каждого из игроков. Игрок А может спрятаться в убежище I – обозначим эту стратегию через A v либо в убежище II – стратегия А. г Игрок В может искать первого игрока в убежище I – стратегия В { либо в убежище II – стратегия В.,. Если игрок А находится в убежище I и там его обнаруживает игрок В, т.е. осуществляется пара стратегий ν В {), то игрок А платит штраф, т.е. а п = -1. Аналогично получаем а. п = -1 2, В.,). Очевидно, что стратегии (А, В.,) и (Л2, /1,) дают игроку А выигрыш 1, поэтому а п = а. п = I. Таким образом, для игры "поиск" размера 2x2 получаем платежную матрицу:

Рассмотрим игру т х п с матрицей Р =a j}, i = 1,2, ..., τη; j = 1, 2, ..., и и определим наилучшую среди стратегий А у A v ..., А т. Выбирая стратегию A jy игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий В., для которой выигрыш для игрока А минимален (игрок В стремится "навредить" игроку А).

Обозначим через а; наименьший выигрыш игрока А при выборе им стратегии Л; для всех возможных стратегий игрока В (наименьшее число в i-й строке платежной матрицы), т.е.

Среди всех чисел а (г = 1,2,..., т) выберем наибольшее: . Назовем а нижней ценой игры, или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

(12.2)

Стратегия, соответствующая максимину, называется максиминной стратегией. Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А; выбирая стратегию В., он учитывает максимально возможный при этом выигрыш для А. Обозначим

Среди всех чисел β. выберем наименьшее,

и назовем β верхней ценой игры , или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В. Следовательно,

(12.4)

Стратегия, соответствующая минимаксу, называется минимаксной стратегией.

Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника. Определим нижнюю и верхнюю цены игры и соответствующие стратегии в задаче 12.1. Рассмотрим платежную матрицу

из задачи 12.1. При выборе стратегии Л, (первая строка матрицы) минимальный выигрыш равен a, =min(-l; 1) = -1 и соответствует стратегии β1 игрока В. При выборе стратегии Л 2 (вторая строка матрицы) минимальный выигрыш равен а 2 = min(l; -1) = -1, он достигается при стратегии В.,.

Гарантируя себе максимальный выигрыш при любой стратегии игрока В , т.е. нижнюю цену игры а = тах(а, а2) = = max(-l; -1) = -1, игрок А может выбирать любую стратегию: Aj или А 2, т.е. любая его стратегия является максиминнои.

Выбирая стратегию В, (столбец 1), игрок В понимает, что игрок А ответит стратегией А 2, чтобы максимизировать свой выигрыш (проигрыш В). Следовательно, максимальный проигрыш игрока В при выборе им стратегии В, равен β, = шах(-1; 1) = 1.

Аналогично максимальный проигрыш игрока В (выигрыш А ) при выборе им стратегии В2 (столбец 2) равен β2 = max(l; -1) = 1.

Таким образом, при любой стратегии игрока А гарантированный минимальный проигрыш игрока В равен β = = πιίη(β1, β2) = min(l; 1) = 1- верхней цене игры.

Любая стратегия игрока В является минимаксной. Дополнив табл. 12.1 строкой β; и столбцом а;, получим табл. 12.2. На пересечении дополнительных строки и столбца будем записывать верхнюю и нижнюю цены игр.

Таблица 12.2

В задаче 12.1, рассмотренной выше, верхняя и нижняя цены игры различны: а Ф β.

Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры α = β = υ называется чистой ценой игры, или ценой игры. Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями, а их совокупность – оптимальным решением, или решением игры. В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В) выигрыш υ, а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока Л) проигрыша υ. Говорят, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Пара чистых стратегий А. и В.дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент гг является одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом).

Обозначим А* и В* – пару чистых стратегий, на которых достигается решение игры в задаче с седловой точкой. Введем функцию выигрыша первого игрока на каждой паре стратегий: Р(А :, В -) = а у . Тогда из условия оптимальности в седловой точке выполняется двойное неравенство: P(Aj, В*)<Р(А*, В*)<Р(А", В ), которое справедливо для всех i = 1, 2, ..., m;j = 1, 2, ..., п. Действительно, выбор стратегии А * первым игроком при оптимальной стратегии В" второго игрока максимизирует минимальный возможный выигрыш: Р(А *, B ")> Р(А Г В"), а выбор стратегии B" вторым игроком при оптимальной стратегии первого минимизирует максимальный проигрыш: Р(Д , В*)<Р(А", В).

12.2. Определить нижнюю и верхнюю цену игры, заданной платежной матрицей

Имеет ли игра седловую точку?

Таблица 12. 3

Решение. Все расчеты удобно проводить в таблице, в которую, кроме матрицы Р, введены столбец а; и строка }