Как образуются пятна на солнце. Солнечные пятна и факелы

Для понимания физической природы процессов, протекающих на Солнце, важно установить причины более низкой температуры пятен по сравнению с фотосферой, роль магнитных явлений в их развитии и существовании и механизм 11 (22)-летней цикличности солнечной активности.

Таблица 6. Модель солнечного пятна по Мишару (1953). В каждой двойной колонке первая относится к фотосфере, вторая к пятну. Давление выражено в дин/см2. Неуверенные значения поставлены в скобки. Аргументом выбрана оптическая глубина при .

Температура пятен, как сказано было ранее, значительно ниже температуры фотосферы, что подтверждается их относительной темнотой и гораздо более низкой степенью ионизации и возбуждения, как это следует из их спектров. Уменьшение числа электронов в пятнах вызывает уменьшение непрозрачности солнечного вещества (в первую очередь за счет сильного уменьшения числа ионов ). Таким образом, в пятнах мы «заглядываем» в большие геометрические глубины, чем в фотосфере. Однако эти глубины все равно крайне незначительны, как это видно из таблицы 6.

Таким образом, учитывая эффект Вильсона, видимое пятно можно уподобить мелкой тарелке. Проследить простирание пятна в глубину очень трудно, так как оно зависит от распределения магнитного поля с глубиной. Действительно, как видно из таблицы 6, давление на одном и том же уровне в пятне приблизительно на дин/см2 (около 0,2 атм) меньше, чем в соседней фотосфере. Равновесие может поддерживаться только при добавочном давлении, которое создается магнитным полем [см. § 2, формулу (2.26)]. Давление равно и эта величина будет равняться дин/см2, если . Как раз такое магнитное поле обычно для верхнего уровня пятен. Следующие численные характеристики типичны для среднего солнечного пятна:

Ввиду большого масштаба движений в солнечной фотосфере и под ней затухание магнитных полей на Солнце протекает исключительно медленно (нужны сотни лет). По этой причине активные области Солнца имеют длительное существование и магнитные поля то погружаются в глубь фотосферы, то всплывают на ее поверхность. Вблизи поверхности, где плотность вещества становится малой, условие равенства кинетической энергии и энергии магнитного поля нарушается в пользу последней, и конвекция оказывается сильно подавленной, между тем нормально конвекционные потоки несут с собой тепло. Кроме того, на субфотосфер ном уровне пятен конвективный приток тепла с периферии также запрещен, так как он протекает поперек магнитных силовых линий. Именно отсутствие конвекции является причиной низкой температуры пятен. Впрочем, это не единственная причина. Возможен также унос тепла из тени магнитогидродинамическими волнами.

Длительно существующие магнитные поля на Солнце связаны, по-видимому, с существованием больших циркуляционных движений в конвективной зоне Солнца до глубины в несколько десятков тысяч километров, возникающих вследствие неоднородности вращения Солнца. Циркуляция плазмы порождает магнитные вихри, и когда они выходят на поверхность, то появляются биполярные группы, простые или сложные, видимым выражением которых становятся пятна (рис. 40). Одновременно на Солнце имеется много таких вихрей на различных меридианах. Вероятно, в течение цикла они перемещаются к экватору, в то время как новые вихри зарождаются у полюсов и приходят на смену старым. Естественно, что направление вихрей различно в обоих полушариях. Скорость, с которой спускаются к экватору большие вихри, определяет продолжительность цикла солнечной активности.

22-летняя цикличность остается непонятной. Конечно, магнитные силовые линии выходят и далеко за поверхность Солнца, в хромосферу и корону, но они должны быть выносимы определенными массами вещества. Мы увидим дальше признаки вмешательства магнитных сил в хромосферные и корональные процессы.

Рис. 40. Магнитные области на Солнце (схема)

Небольшие магнитные поля, подобные тем, которые существуют на периферии пятен, вместо того, чтобы подавлять конвекцию, усиливают ее. Это происходит потому, что слабое поле, не будучи в состоянии помешать энергичной конвекции, подавляет сравнительно слабую турбулентность и тем самым уменьшает вязкость газа что ускоряет конвективные движения. Выходя в верхние слои фотосферы, избыточный за счет конвекции поток тепла нагревает газ, и потому вокруг пятен наблюдаются факелы, а над факелами - флоккулы, кальциевые и водородные. Граница кальциевых флоккул определяет в целом границу активной области, водородные же флоккулы теснятся ближе к пятну - туда, где магнитное поле несколько сильнее: 10-15 Э. Возможно, что петлеобразная форма «выпирающих» магнитных силовых линий (рис. 41) определяет продвижение газовых потоков (вдоль силовых линий), что согласуется с наблюдаемым при помощи лучевых скоростей явлением втекания вещества внутрь пятна на большой высоте.

Рис. 41. Выход магнитного поля на поверхность Солнца (схема)

Хотя в неактивных областях Солнца магнитное поле имеет напряженность 1-2 Э, в отдельных местах, небольших по размерам, оно может достигать 100 Э. В тех же местах в фотосфере наблюдаются тогда небольшие яркие узлы.

Более высокая, чем окружающая, температура вместе с магнитным полем порождает перевес давления над окружающим веществом, так что узел должен быстро рассеяться, а для длительного его существования необходим приток газов извне, который может осуществиться, если основание узла в фотосфере холоднее, а давление ниже, чем в окружающей среде.

Более детальную картину горизонтальных движений на разных уровнях солнечной атмосферы в связи с тонкой структурой магнитных полей дают модифицированные спектрогелиографические наблюдения по методу Лейтона. Метод этот состоит в том, что одновременно получают спектрогелиографические крупномасштабные изображения свободного от пятен участка Солнца в лучах коротко- и длинноволнового крыла той или иной спектральной линии. Как уже говорилось выше (с. 47), удаляясь от центра линии, мы наблюдаем все более глубокие слои атмосферы Солнца, между тем как правое и левое крылья линии соответствуют в одном случае преимущественно приближающимся, а в другом - удаляющимся газовым массам. Сопоставление обеих спектрогелиограмм выявляет на поверхности Солнца потоки, движущиеся к наблюдателю и от него. Оказалось, что они локализуются в пределах ячеек поперечником около 30 тыс. км, так что в каждой ячейке имеется систематическое движение газовых масс от центра к периферии. Эти ячейки получили название супергранул. Они гораздо более долговечны, чем обычные гранулы, - их средняя продолжительность жизни составляет 40 часов. Они имеют угловатую форму, похожую на многоугольники.

Супергрануляция отражает явление конвекции на Солнце в гораздо большем масштабе, чем грануляция, захватывая не только большие площади, но и большие глубины. По условиям наблюдений (в крыльях различных линий) удается проследить эту конвекцию лишь в верхних слоях солнечной фотосферы. Наблюдаемая на -спектрогелиограммах ячеистая сетка относится уже к верхней хромосфере и не совпадает с сеткой супергрануляции. Наоборот, явление гранул, наблюдаемое в интегральном свете, относится к несколько большим глубинам, чем наблюдаемые области супергрануляции. Но как по распределению скоростей в супергранулах, так и по изучению движения индивидуальных гранул все перемещения солнечной плазмы идут к границам супергранул, унося с собой и магнитное поле. Здесь, встречаясь с подобным же потоком соседней супергранулы, плазма уходит вглубь, чем и обеспечивается постоянная циркуляция ее. Магнитное поле при этом остается (так как движение плазмы происходит вдоль силовых линий), и здесь его напряженность достигает значений в несколько десятков и даже сотен эрстед, а в углах ячеек даже до 1,5-2 тыс. эрстед, как это видно из наблюдений эффекта Зеемана. Таким образом, у каждой супергранулы имеется ограничивающий и охраняющий ее магнитный барьер. Но кроме этого граница супергранулы обладает более высокой температурой, чем ее центр, примерно на 2-4 %, что следует из возрастания яркости тех спектральных линий, которые усиливаются в пятнах, т. е. линий низкого возбуждения. Возрастание яркости в линиях свидетельствует об уменьшении числа поглощающих атомов, которое в данном случае происходит из-за возрастания возбуждения или ионизации.

Допускается, что в глубине фотосферы супергранулы частично сливаются, так как, за исключением углов ячеек, стенки супергранул представляют довольно слабый магнитный барьер при возрастающей плотности газов.

Влияние супер грануляционной структуры больше простирается вверх. При наблюдениях вблизи солнечного края супергранулы совпадают с ячейками факелов. Здесь, в фотосфере, только в этом случае супергрануляция может быть видима. Наоборот, в хромосфере супергрануляция проявляет себя той сеткой флоккул, которая отчетливо выступает на спектрогелиограммах в лучах CaII К. Эта сетка хорошо видна и на заатмосферных фотографиях Солнца в лучах ультрафиолетовых линий, перечисленных на с. 72, излучающих над хромосферой в переходном слое, но исчезает в лучах корональных линий, как, например, линии . Надо думать, что так далеко простираются и магнитные поля супер гранул, их окаймляющие. Только на корональных высотах они приобретают упорядоченный вид: магнитные линии идут радиально, определяя каналы, по которым движутся теплопроводящие электроны. Их движение, таким образом, стеснено, теплопроводность переходного слоя уменьшается и толщина его становится больше, чем при отсутствии поля. Разумеется, все сказанное относится к спокойным хромосфере и короне.

Сергей Богачев

Как устроены пятна на Солнце

На диске Солнца появилась одна из самых крупных в этом году активных областей, а значит, на Солнце снова есть пятна - притом что наша звезда вступает в период . О природе и истории обнаружения солнечных пятен, а также об их влиянии на земную атмосферу рассказывает сотрудник Лаборатории рентгеновской астрономии Солнца ФИАН, доктор физико-математических наук Сергей Богачев.


В первом десятилетии XVII века итальянский ученый Галилео Галилей и немецкий астроном и механик Кристоф Шейнер приблизительно одновременно и независимо друг от друга усовершенствовали изобретенную за несколько лет до этого подзорную трубу (или телескоп) и создали на ее основе гелиоскоп - прибор, позволяющий наблюдать Солнце, проецируя его изображение на стену. На этих изображениях ими были обнаружены детали, которые можно было бы принять за дефекты стены, если бы они не перемещались вместе с изображением - небольшие пятна, усеивающие поверхность идеального (и отчасти божественного) центрального небесного тела - Солнца. Так в историю науки вошли солнечные пятна, а в нашу жизнь - поговорка о том, что на свете нет ничего идеального: «И на Солнце есть пятна».

Солнечные пятна являются основной деталью, которую можно разглядеть на поверхности нашей звезды без применения сложной астрономической техники. Видимые размеры пятен составляю порядка одной угловой минуты (размер 10-копеечной монеты с расстояния в 30 метров), что находится на пределе разрешения человеческого глаза. Однако достаточно совсем простого оптического прибора, увеличивающего всего в несколько раз, чтобы эти объекты были обнаружены, что, собственно, и произошло в Европе в начале XVII века. Отдельные наблюдения пятен, впрочем, регулярно происходили и до этого, причем часто они делались просто глазом, но оставались незамеченными или непонятыми.

Природу пятен некоторое время пытались объяснить, не затрагивая идеальность Солнца, например, как облака в солнечной атмосфере, но довольно быстро стало понятно, что они относятся посредственно к солнечной поверхности. Природа их, тем не менее, оставалась загадкой вплоть до первой половины XX, когда на Солнце впервые были обнаружены магнитные поля и оказалось, что места их концентрации совпадают с местами формирования пятен.

Почему пятна выглядят темными? Прежде всего надо заметить, что их темнота не является абсолютной. Она, скорее, подобна темному силуэту человека, стоящего на фоне освещенного окна, то есть является лишь кажущейся на фоне очень яркого окружающего света. Если измерить «яркость» пятна, то можно обнаружить, что оно также излучает свет, но лишь на уровне 20-40 процентов от нормального света Солнца. Этого факта достаточно, чтобы без каких-либо дополнительных измерений определить температуру пятна, так как поток теплового излучения от Солнца однозначно связан с его температурой через закон Стефана-Больцмана (поток излучения пропорционален температуре излучающего тела в четвертой степени). Если положить яркость обычной поверхности Солнца с температурой около 6000 градусов Цельсия как единицу, то температура солнечных пятен должна составлять около 4000-4500 градусов. Собственно говоря, так оно и есть - солнечные пятна (а это впоследствии было подтверждено и иными методами, например спектроскопическими исследованиями излучения), являются просто участками поверхности Солнца более низкой температуры.

Связь пятен с магнитными полями объясняется влиянием магнитного поля на температуру газа. Такое влияние связано с наличием у Солнца конвективной (кипящей) зоны, которая простирается от поверхности на глубину примерно трети солнечного радиуса. Кипение солнечной плазмы непрерывно поднимает из его недр к поверхности горячую плазму и тем самым повышает температуру поверхности. В областях, где поверхность Солнца пробивают трубки сильного магнитного поля, эффективность конвекции подавляется вплоть до полной ее остановки. В результате без подпитки горячей конвективной плазмой поверхность Солнца остывает как раз до температур порядка 4000 градусов. Формируется пятно.


В наши дни пятна изучают в основном как центры активных солнечных областей, в которых концентрируются солнечные вспышки. Дело в том, что магнитное поле, «источником» которого являются пятна, приносит в атмосферу Солнца дополнительные запасы энергии, которые являются для Солнца «лишними», и оно, как и любая физическая система, стремящаяся минимизировать свою энергию, пытается от них избавиться. Эта дополнительная энергия так и называется - свободная. Для сброса лишней энергии существует два основных механизма.

Первый, когда Солнце просто выбрасывает в межпланетное пространство отягощающую его часть атмосферы вместе с лишними магнитными полями, плазмой и токами. Эти явления называют корональными выбросами массы. Соответствующие выбросы, распространяясь от Солнца, достигают порой колоссальных размеров в несколько миллионов километров и являются, в частности, главной причиной магнитных бурь - удар такого сгустка плазмы по магнитному полю Земли выводит его из равновесия, заставляет колебаться, а также усиливает электрические токи, текущие в магнитосфере Земли, что и составляет суть магнитной бури.

Второй способ - это солнечные вспышки. В этом случае свободная энергия сжигается непосредственно в солнечной атмосфере, однако последствия этого тоже могут доходить до Земли - в виде потоков жесткого излучения и заряженных частиц. Такое воздействие, являющееся по своей природе радиационным, является одной из главных причин выхода из строя космических аппаратов, а также полярных сияний.

Не стоит, впрочем, обнаружив на Солнце пятно, сразу готовиться к солнечным вспышкам и магнитным бурям. Довольно частой является ситуация, когда появление на диске Солнца пятен, даже рекордно крупных, не приводит даже к минимальному повышению уровня солнечной активности. Почему так происходит? Связано это с природой высвобождения магнитной энергии на Солнце. Такая энергия не может высвободиться из одного магнитного потока, точно так же как лежащий на столе магнит, как бы его ни трясли, не создаст никакой солнечной вспышки. Таких потоков должно быть, как минимум, два, и они должны иметь возможность для взаимодействия друг с другом.

Поскольку одна магнитная трубка, пробивающая поверхность Солнца в двух местах, создает два пятна, то все группы пятен, в которых пятен всего два или одно, создавать вспышки не способны. Эти группы образованы одним потоком, которому не с чем взаимодействовать. Такая пара пятен может быть гигантской и существовать на диске Солнца месяцами, пугая Землю своими размерами, но не создаст ни одной, даже минимальной, вспышки. Подобные группы имеют классификацию и называются типом Альфа, если пятно одно, или Бета, если их два.


Сложное солнечное пятно типа Бета-Гамма-Дельта. Сверху - пятно в видимом диапазоне, внизу - магнитные поля, показанные с помощью прибора HMI на борту космической обсерватории SDO

Если вы обнаружили сообщение о появлении на Солнце нового пятна, не поленитесь и посмотрите тип группы. Если это Альфа или Бета, то можете не беспокоиться - ни вспышек, ни магнитных бурь Солнце в ближайшие дни не произведет. Более сложным классом является Гамма. Это группы пятен, в которых существует несколько пятен северной и южной полярности. В такой области существует как минимум два взаимодействующих магнитных потока. Соответственно, такая область будет терять магнитную энергию и подпитывать солнечную активность. И, наконец, последний класс - Бета-Гамма. Это максимально сложные области, с предельно запутанным магнитным полем. Если такая группа появилась в каталоге, можно не сомневаться - распутывать эту систему Солнце будет не менее нескольких дней, сжигая энергию в виде вспышек, в том числе крупных, и выбрасывая плазму, пока не упростит данную систему до простой конфигурации Альфа или Бета.

Впрочем, несмотря на «устрашающую» связь пятен со вспышками и магнитными бурями, не следует забывать, что это одно из наиболее замечательных астрономических явлений, которое можно наблюдать с поверхности Земли в любительские инструменты. Наконец, солнечные пятна, это очень красивый объект - достаточно посмотреть на их снимки, полученные с высоким разрешением. Тем же, кто даже после этого не способен забыть о негативных аспектах этого явления, можно утешиться тем, что число пятен на Солнце все-таки относительно мало (не более 1 процента поверхности диска, а чаще гораздо меньше).

Ряд типов звезд, как минимум красные карлики, «страдают» в куда большей степени - пятнами в них может быть покрыто до десятков процентов площади. Можно вообразить, какие имеют гипотетические обитатели соответствующих планетных систем, и еще раз порадоваться, рядом с какой относительно спокойной звездой нам посчастливилось жить.

Черные пятна на поверхности Солнца нашими предками были замечены тысячи лет назад, но, не имея приборов, долгое время не могли разобраться, к чему они относятся либо к Солнцу, либо это тени пролетающих небесных тел. Только в 17-м веке, с помощью самодельного телескопа, Галилео Галилей установил, что пятна относятся к Солнцу и вращаются вместе с ним. После данного открытия, природа загадочных пятен еще долго оставалась неизвестной. По сути, и сегодня мы не можем подступиться к нашему светилу на близкое расстояние, чтобы подробно рассмотреть физику процессов, несмотря на то, что сотни телескопов внимательно следят за ним постоянно. Теоретики также блуждают в темноте черных пятен.

Так что же это за черные пятна на пышущей жаром поверхности Солнца?

Начнем с плазмы. Солнечная плазма – полностью ионизированный газ, Плазму называют «четвертым агрегатным состоянием вещества», но эта нумерация проставлена не верно, т.к. в масштабах Вселенной, плазма самое распространенное состояние материи. Плазменным веществом наполнены все звезды. Поэтому плазма представляет не четвертое, а первое состояние вещества в природе.

Плазма и присутствующие в ней свободные электрические заряды, создают проводящую среду для электрического тока, что обуславливает её взаимодействие с магнитными и электрическими полями.

В Википедии сказано: «В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний» .

Вот здесь должен сказать, что при больших плотностях плазмы и мощных конвективных потоках могут возникать протяженные плазменные жгуты, иногда их называют «шнурами», «тяжами», «волокнами», «струями» «магнитными трубками», а теперь еще и «спикулами». Данные жгуты – есть настоящие проводники электрических токов. Вокруг таких жгутов образуются мощные магнитные поля, которые, в свою очередь, выстраивают новые электрические жгуты. Вот поэтому на снимках вокруг пятен мы наблюдаем эти жгуты в виде своеобразных штрихов, образующих магнитные спиральности.

Пятна визуально кажутся нам черными и холодными, на очень ярком фоне фотосферы с эффективной температурой 5778 0 К, на самом деле их температура – около 4500 0 . Средняя глубина пятен составляет 500 км.

Взаимодействие таких жгутов (проводников) друг с другом приводит к взаимному пространственному построению вокруг мнимого центра. Так образуется черное пятно. Ионизированное вещество из данного центра буквально «высасывается» в окружающие его жгуты. Что и приводит, в конечном счете, к быстрому расширению черных пятен. Поскольку конвективные потоки плазмы поднимаются из солнечных недр по радиусам, то образование проводящих электрических шнуров происходит в радиальном направлении. По мере выхода вещества в область пятна, оно тут же «разбирается», втягивается в тот или иной жгут. Поэтому излучение в центре пятна уменьшается во много раз, соответственно уменьшается и температура в данной зоне, что и приводит к его невидимости.

По сути, расширение пятна происходит за счет электромагнитного взаимодействия параллельных проводников с токами, протекающими в одном направлении. Притяжение проводников с током друг к другу и располагающихся по кругу, расширяет пространство данного кольца. На первом этапе плазменное кольцо не может разорваться за счет подпитки восходящими потоками плазмы из центральных областей Солнца. По мере его расширения электромагнитные силы в центре ослабевают, и конвективные потоки начинают прорываться в верхние слои фотосферы, вклиниваясь в плазменные жгуты, которые начинают разрушаться. Это приводит к рассасыванию пятна.

Мелкие пятна могут образовываться как восходящими, так и нисходящими потоками плазмы. В случае нисходящего потока, магнитное поле пятна будет противоположным. Такие пятна не могут существовать долго из-за давления плазмы в конвективных потоках, исходящих из недр Солнца. В то же время, пятна, образованные восходящими потоками могут достигать огромных размеров и существовать порядка месяца.

Солнечные пятна непосредственно воздействуют на климат и, как утверждал Чижевский, на общественные процессы.

Солнечные вспышки (солнечные трясения)

Но вряд ли астроном-старик
определит: "На солнце - буря".
Мы можем всласть глазеть на лик,
разинув рты и глаз не щуря.

(Владимир Высоцкий)

Что такое солнечная буря, (солнечная вспышка)? О ней пишут, о ней говорят, ее обсуждают, ее ждут. Но что это такое никто точно сказать не может.

Единственным достоверным фактом является то, что вспышки без присутствия солнечных пятен не возникают.

Во время мощной вспышки поток ультрафиолетового, рентгеновского и гамма излучения увеличивается во много тысяч раз. Радиоактивное фотонное излучение достигает Земли через восемь минут после начала вспышки. Через несколько десятков минут долетают потоки заряженных частиц, а через двое-трое суток до Земли доходят облака электронов и протонов.

Озоновый слой и вся атмосфера Земли встают на защиту от смертельных доз излучения, а геомагнитное поле – от заряженных частиц. Однако на 100% от жесткого излучения защититься не удается, поэтому угроза от солнечных вспышек существует. Вспышки могут повредить спутники, облучить космонавтов, повлиять на работу авиакомпаний и электросетей, поэтому важно их прогнозировать и понимать природу их возникновения.

«Солнечные вспышки, как правило, происходят в местах взаимодействия солнечных пятен противоположной магнитной полярности или, более точно, вблизи нейтральной линии магнитного поля, разделяющей области северной и южной полярности. Частота и мощность солнечных вспышек зависят от фазы 11-летнего солнечного цикла» .

Вспышка – это фонтан энергии, с температурой до 30 тысяч градусов. Это короткоживущий процесс, который длится около одной минуты. Эти сведения подвигают меня к мысли о солнечной молнии. Если вспышка мощная, то процесс высвечивания плазмы может продолжаться значительное время (десятки минут, иногда достигает часов). Все зависит от масштаба грандиозного явления.

Поскольку солнечные пятна – это нестабильные процессы, происходящие в фотосфере, то можно сделать предположение, что вспышка – результат нестабильных (переходных) процессов. По своей сути, солнечная вспышка – это мощнейшая молния! Что значит мощнейшая? В этот контекст я вкладываю сумму параллельно сложенных элементарных молний. Это огромный поток ионизированных частиц в едином порыве замыкается с противоположным по знаку таких же частиц, выброшенных давлением Солнца.

На самом деле все эти жгуты-проводники состоят из отдельных молний, но на общем световом фоне фотосферы мы их наблюдаем в виде оттенков более светлых тонов, пульсаций.

Магнитные линии (см. снимок ниже), по которым устремляются заряженные частицы плазмы, имеют очень малое отклонение и уходят вверх. Это говорит насколько масштабное и сильное магнитное поле солнечного пятна. На снимке видно начало зарождения вспышки на краю пятна.

В момент удара такой молнии в плазме возникает мощное давление газов, после происходит выброс коронарной плазмы и солнцетрясение.

Солнечное пятно, сфотографированное в «анфас» солнечной космической обсерваторией Hinode . Выбросы плазмы вверх по изгибающимся линиям магнитного поля.

В отличие от землетрясений, которые рождают короткие всплески волн на Земле, в недрах Солнца, благодаря солнечным молниям, создается постоянный сейсмический шум и мощные солнцетрясения. Но, поскольку солнечное вещество не твердое, а плазменное, то сейсмические волны быстро затухают.

Солнечные вспышки представляют собой уникальные по своей силе и мощности выделения тепловой, кинетической, сейсмической и световой энергии Солнца.

Муаровая зернистость поверхности Солнца

Если бы на Солнце присутствовал в достаточном количестве кислород, то на нашу Землю постоянно падали частицы пепла, как при извержениях вулканов.

В связи с этим хочу высказать еще одну оригинальную мысль, которую начну с вопроса: Что за гранулы (ячейки) мы наблюдаем с Земли в телескоп? При достаточно большом увеличении поверхность Солнца предстает перед нами в виде муаровой зернистости.

Гранулированная структура солнечной поверхности, в центре темное пятно

Н а снимке отчетливо видны ячейки, окруженные темными границами разной формы.

Что это за ячейки-гранулы и откуда они возникают?

Солнечную плазму иногда сравнивают с кипящим бульоном. Такое сравнение вполне корректно, т.к. дает наглядную модель в миниатюре – солнечную поверхность. Когда мы на кухонной плите готовим мясной бульон, то после закипания в кастрюле мы наблюдаем восходящие потоки жидкости, которые в разных направлениях разбрасывают накипь. Если сделать фотографию нашего бульона сверху, то на снимке можем получить картинку похожую на выше приведенный снимок.

С помощью опыта с мясным бульоном я подвожу читателя к ассоциативной мысли, что на границах солнечных гранул находится накипь! Солнечная накипь представляет собой продукты сгорания, в их числе пепел. Как видно из снимка, гранулы имеют более светлый оттенок в центре, а ближе к границе – более темный. Это подтверждает версию сравнения с бульоном, т.е. центральная часть зерен возвышается над периферией, перепады высот могут достигать десятки километров, при среднем диаметре гранул в 1000 км. Вот такой он солнечный, бурлящий и клокочущий бульон плазмы.

Еще более наглядно солнечную поверхность можно представить, если посмотреть сверху на тропический лес. Благодаря различной освещенности верхушек крон деревьев и периферийной части кроны, мы можем определить разницу в высотах. Поэтому, наблюдая с высоты тропические леса, невольно улавливаешь себя на мысли, что внизу не лес, а куполообразные зеленые земляные холмы.

Если продлить данную аналогию на Солнце, то можно представить, что его поверхность представляет собой огромные холмы, состоящие из плазмы ярко слепящего цвета. Данные холмы (гранулы) возникают в результате конвективных, восходящих потоков, формирующих своеобразные конвективные колонны плазмы.

На Солнце пятна и вспышки, на Солнце солнцетрясения! Пятна и вспышки можно наблюдать визуально, а трясения можно обнаружить только с помощью сейсмометров. Кто и как может установить приборы на Солнце?

Источники

  1. Квазинейтральность, http://m.bankreferatov.ru/referats/.doc.html
  2. Википедия, Солнечная вспышка, http://ru.wikipedia.org/wiki

Hinode – искусственный спутник Земли, предназначенный для исследования солнечной активности, магнитного поля и излучения в ультрафиолетовом и рентгеновском диапазонах. На его борту установлены оптический и рентгеновский телескопы, а также ультрафиолетовый спектрометр. Аппарат создан усилиями японских, британских и американских инженеров; был запущен в 2006-м году с японского космодрома Утиноура.

Возникновение

Возникновение солнечного пятна: магнитные линии проникают сквозь поверхность Солнца

Пятна возникают в результате возмущений отдельных участков магнитного поля Солнца. В начале этого процесса пучок магнитных линий «прорывается» сквозь фотосферу в область короны и тормозит конвекционное движение плазмы в грануляционных ячейках, препятствуя в этих местах переносу энергии из внутренних областей наружу. Первым в этом месте возникает факел, чуть позже и западнее – маленькая точка, называемая пора , размером несколько тысяч километров. В течение нескольких часов величина магнитной индукции растет (при начальных значениях 0,1 тесла), и размер и количество пор увеличивается. Они сливаются друг с другом и формируют одно или несколько пятен. В период наибольшей активности пятен величина магнитной индукции может достигать 0,4 тесла.

Срок существования пятен достигает нескольких месяцев, то есть отдельные пятна могут наблюдаться в течение нескольких оборотов Солнца вокруг себя. Именно этот факт (движение наблюдаемых пятен вдоль солнечного диска) послужил основой для доказательства вращения Солнца и позволил провести первые измерения периода обращения Солнца вокруг своей оси.

Пятна обычно формируются группами, однако иногда возникает одиночное пятно, живущее всего несколько дней, или два пятна, с направленными из одного в другое магнитными линиями.

Первое возникшее в такой двойной группе называется P-пятно (англ. preceding) старейшее – F-пятно (англ. following).

Только половина пятен живут больше двух дней, и всего десятая часть переживает 11-дневный порог

Группы пятен всегда вытягиваются параллельно солнечному экватору.

Свойства

Средняя температура поверхности Солнца около 6000 С (эффективная температура – 5770 К, температура излучения – 6050 К). Центральная, самая темная, область пятен имеет температуру всего около 4000 С, наружные области пятен, граничащие с нормальной поверхностью, - от 5000 до 5500 С. Несмотря на то, что температура пятен ниже, их вещество все равно излучает свет, хоть и в меньшей степени, чем остальная поверхность. Именно из-за этой разницы температур при наблюдении и возникает ощущение, что пятна темные, почти черные, хотя на самом деле они тоже светятся, однако их свечение теряется на фоне более яркого солнечного диска.

Пятна – области наибольшей активности на Солнце. В случае, если пятен много, то существует высокая вероятность того, что произойдет пересоединение магнитных линий – линии, проходящие внутри одной группы пятен, рекомбинируют с линиями из другой группы пятен, имеющими противоположную полярность. Видимым результатом этого процесса является солнечная вспышка. Всплеск излучения, достигая Земли, вызывает сильные возмущения ее магнитного поля, нарушает работу спутников и даже оказывает влияние на расположенные на планете объекты. Благодаря нарушениям магнитного поля увеличивается вероятность возникновения северных сияний в низких географических широтах. Ионосфера Земли также подвержена флуктуациям солнечной активности, что проявляется в изменении распространения коротких радиоволн.

В годы, когда пятен на солнце мало, размер Солнца уменьшается на 0,1%. Годы в промежутке между 1645 и 1715 (минимум Маундера), известны глобальным похолоданием, и называют малым ледниковым периодом.

Классификация

Пятна классифицируют в зависимости от срока жизни, размера, расположения.

Стадии развития

Локальное усиление магнитного поля, как было сказано выше, тормозит движение плазмы в конвекционных ячейках, тем самым замедляя вынос тепла на поверхность Солнца. Охлаждение затронутых этим процессом гранул (примерно на 1000 С) приводит к их потемнению и формированию единичного пятна. Некоторые из них исчезают через несколько дней. Другие развиваются в биполярные группы из двух пятен, магнитные линии в которых имеют противоположную полярность. Из них могут сформироваться группы из множества пятен, которые в случае дальнейшего увеличения области полутени объединяют до сотни пятен, достигая размеров в сотни тысяч километров. После этого происходит медленное (в течение нескольких недель или месяцев) снижение активности пятен и уменьшение их размеров до маленьких двойных или одинарных точек.

Самые крупные группы пятен всегда имеют связанную группу в другом полушарии (северном или южном). Магнитные линии в таких случаях выходят из пятен в одном полушарии и входят в пятна в другом.

Цикличность

Реконструкция солнечной активности за 11000 лет

Солнечный цикл связан с частотой появления пятен, их активностью и сроком жизни. Один цикл охватывает примерно 11 лет. В периоды минимума активности пятен на Солнце очень мало или нет вообще, в то время как в период максимума их может наблюдаться несколько сотен. В конце каждого цикла полярность солнечного магнитного поля меняется на противоположную, поэтому правильнее говорить о 22-летнем солнечном цикле.

Длительность цикла

11 лет – приблизительный промежуток времени. Хотя в среднем он длится 11,04 года, бывают циклы длиной от 9 до 14 лет. Средние значения также меняются на протяжении столетий. Так, в 20 веке средняя длина цикла составила 10,2 года. Минимум Маундера (наряду с другими минимумами активности) говорят, что возможно увеличение цикла до порядка в сотню лет. По анализам изотопа Be 10 в гренландских льдах получены данные, что за последние 10000 лет было более 20 таких долгих минимумов.

Длина цикла непостоянна. Швейцарский астроном Макс Вальдмайер утверждал, что переход от минимума к максимуму солнечной активности происходит тем быстрее, чем больше максимальное количество солнечных пятен, зарегистрированное в этом цикле.

Начало и конец цикла

Пространственно-временное распределение магнитного поля по поверхности Солнца.

В прошлом началом цикла считался момент, когда солнечная активность пребывала в точке своего минимума. Благодаря современным методам измерений стало возможно определять изменение полярности солнечного магнитного поля, поэтому сейчас за начало цикла принимают момент изменения полярности пятен.

Циклы идентифицируются по порядковому номеру, начиная с первого, отмеченного в 1749 Johann Rudolf Wolfом. Текущий цикл (апрель 2009) имеет номер 24.

Данные о последних солнечных циклах
Номер цикла Год и месяц начала Год и месяц максимума Максимальное количество пятен
18 1944-02 1947-05 201
19 1954-04 1957-10 254
20 1964-10 1968-03 125
21 1976-06 1979-01 167
22 1986-09 1989-02 165
23 1996-09 2000-03 139
24 2008-01 2012-12 87.

В 19 веке и приблизительно до 1970 года существовала догадка, что существует периодичность изменения максимального количества солнечных пятен. Эти 80-летние циклы (с наименьшими максимумами пятен в 1800-1840 и 1890-1920 гг.) в настоящее время связывают с процессами конвекции. Другие гипотезы говорят о существовании еще больших, 400-летних циклов.

Литература

  • Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986

Wikimedia Foundation . 2010 .

Смотреть что такое "Пятна на Солнце" в других словарях:

    См … Словарь синонимов

    Как солнце на небе, на одном солнце онучи сушили, пятна в солнце, пятна на солнце.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. солнце солнцепек, (ближайшая к нам) звезда, паргелий,… … Словарь синонимов

    У этого термина существуют и другие значения, см. Солнце (значения). Солнце … Википедия

Как, например, в середине прошлого тысячелетия. Каждый обитатель нашей планеты в курсе, что на главном источнике тепла и света находятся небольшие потемнения, которые сложно рассмотреть без специальных приспособлений. Но далеко не всем известен факт, что именно они приводят к которые могут сильно отразиться на магнитном поле Земли.

Определение

Говоря простым языком, солнечные пятна - это тёмные участки, образующиеся на поверхности Солнца. Ошибочно полагать, что они не излучают яркий свет, однако по сравнению с остальной фотосферой они действительно гораздо мрачнее. Их основной характеристикой является пониженная температура. Таким образом, солнечные пятна на Солнце холоднее примерно на 1500 Кельвинов, чем другие окружающие их участки. По сути, они представляют собой те самые области, сквозь которые магнитные поля выходят на поверхность. Благодаря этому явлению можно говорить о таком процессе, как магнитная активность. Соответственно, если пятен мало, то это именуется спокойным периодом, а когда их много, то такой период будет называться активным. Во время последнего свечение Солнца чуть более яркое из-за факелов и флоккулов, расположенных вокруг тёмных участков.

Изучение

Наблюдение солнечных пятен ведется давно, оно своими корнями уходит ещё в эпоху до нашей эры. Так, Теофраст Аквинский ещё в IV веке до н. э. в своих работах упоминал об их существовании. Первая зарисовка потемнений на поверхности главной звезды была обнаружена в 1128 году, принадлежит она Джону Ворчестеру. Помимо этого, в древнерусских произведениях XIV века упоминается о чёрных солнечных вкраплениях. Наука стремительно начала заниматься их изучением в 1600-х годах. Большинство учёных того периода придерживались версии, что солнечные пятна - это движущиеся вокруг оси Солнца планеты. Но после изобретения Галилеем телескопа этот миф был развеян. Ему первому удалось выяснить, что пятна являются неотъемлемыми от самой солнечной структуры. Это событие породило мощную волну исследований и наблюдений, которые не прекращаются с тех самых пор. Современное изучение поражает воображение своими масштабами. В течение 400 лет прогресс в этой области сделался ощутимым, и сейчас Бельгийская королевская обсерватория занимается подсчётом количества солнечных пятен, но раскрытие всех граней этого космического явления всё ещё продолжается.

Появление

Ещё в школе детям рассказывают о существовании магнитного поля, однако обычно упоминают лишь полоидальный компонент. Но теория солнечных пятен предполагает изучение также тороидального элемента, естественно, речь уже идёт о магнитном поле Солнца. У Земли его невозможно вычислить, так как оно не появляется на поверхности. Другая ситуация обстоит с небесным светилом. При совокупности определённых условий магнитная трубка всплывает наружу сквозь фотосферу. Как вы догадались, этот выброс приводит к тому, что на поверхности образуются солнечные пятна. Чаще всего это происходит массово, именно поэтому наиболее распространены групповые скопления пятен.

Свойства

В среднем достигает 6000 К, в то время как у пятен она составляет около 4000 К. Однако это не мешает им по-прежнему производить мощное количество света. Солнечные пятна и активные области, то есть группы пятен, имеют разные сроки существования. Первые живут от пары дней до нескольких недель. А вот последние куда более живучие и могут оставаться в фотосфере на протяжении месяцев. Что касается структуры каждого отдельного пятна, то она представляется непростой. Центральная его часть называется тенью, которая внешне выглядит однотонной. В свою очередь, она окружена полутенью, отличающейся своей изменчивостью. В результате соприкосновения холодной плазмы и магнитной на ней заметны колебания вещества. Размеры солнечных пятен, а также их количество в группах может быть самым разнообразным.

Циклы солнечной активности

Всем известно, что уровень постоянно меняется. Это положение привело к возникновению понятия 11-летнего цикла. Солнечные пятна, их появление и число очень тесно взаимосвязаны с этим явлением. Однако этот вопрос остаётся противоречивым, так как один цикл может варьироваться от 9 до 14 лет, а также уровень активности неустанно изменяется от столетия к столетию. Таким образом, могут быть периоды некого затишья, когда более одного года пятна практически отсутствуют. Но может случиться и обратное, когда их количество считается аномальным. Раньше отсчёт начала цикла начинался с момента минимальной солнечной активности. Но с появлением усовершенствованных технологий исчисление ведётся с того момента, когда изменяется полярность пятен. Данные о прошлых солнечных активностях доступны для изучения, однако они вряд ли могут стать самым верным помощником в прогнозировании будущего, ведь природа Солнца весьма непредсказуема.

Воздействие на планету

Не секрет, что на Солнце тесным образом взаимодействуют с нашей повседневной жизнью. Земля постоянно подвергается атакам различных раздражителей извне. От их разрушительного воздействия планета защищена при помощи магнитосферы и атмосферы. Но, к сожалению, они не способны противостоять ему полностью. Таким образом, из строя могут быть выведены спутники, нарушается радиосвязь, а космонавты подвержены повышенной опасности. Помимо этого, излучение влияет на климатические изменения и даже на внешность человека. Существует такое явление, как солнечные пятна на теле, появляющиеся под воздействием ультрафиолета.

Этот вопрос ещё не изучен должным образом, как и влияние солнечных пятен на повседневную жизнь людей. Ещё одним явлением, зависящим от магнитных нарушений, можно назвать Магнитные бури стали одним из самых известных последствий солнечной активности. Они представляют собой ещё одно внешнее поле вокруг Земли, которое параллельно постоянному. Современные учёные даже связывают повышенную смертность, а также обострение заболеваний сердечно-сосудистой системы с появлением этого самого магнитного поля. А в народе это даже постепенно начало превращаться в суеверие.