Привет студент. Квазикристалл Квазикристаллы с осью симметрии пятого порядка

Энциклопедичный YouTube

    1 / 3

    Квазикристаллы (рассказывает Валентин Крапошин)

    Лекция 1.1 | Основные элементы симметрии | Основы кристаллохимии

    Британская Ост-Индская компания (рассказывает историк Марина Айзенштат)

    Субтитры

История

Квазикристаллы наблюдались впервые Даном Шехтманом в экспериментах по дифракции электронов на быстроохлаждённом сплаве Al 6 Mn, проведенных 8 апреля 1982 года , за что ему в 2011 году была присвоена Нобелевская премия по химии . Первый открытый им квазикристаллический сплав получил название «шехтманит» (англ. Shechtmanite ). Статья Шехтмана не была принята к печати дважды и в сокращённом виде была в конце концов опубликована в соавторстве с привлечёнными им известными специалистами И. Блехом, Д. Гратиасом и Дж. Каном. Полученная картина дифракции содержала типичные для кристаллов резкие (Брэгговские) пики, но при этом в целом имела точечную симметрию икосаэдра, то есть, в частности, обладала осью симметрии пятого порядка, невозможной в трёхмерной периодической решётке. Эксперимент с дифракцией изначально допускал объяснение необычного явления дифракцией на множественных кристаллических двойниках, сросшихся в зёрна с икосаэдрической симметрией. Однако вскоре более тонкие эксперименты доказали, что симметрия квазикристаллов присутствует на всех масштабах, вплоть до атомного , и необычные вещества действительно являются новой структурой организации материи.

Позднее выяснилось, что с квазикристаллами физики сталкивались задолго до их официального открытия, в частности, при изучении дебаеграмм , полученных по методу Дебая-Шерера от зёрен интерметаллидов в алюминиевых сплавах в 1940-х годах. Однако в то время икосаэдрические квазикристаллы были ошибочно идентифицированы как кубические кристаллы с большой постоянной решетки . Предсказания о существовании икосаэдрической структуры в квазикристаллах были сделаны в 1981 году Кляйнертом и Маки .

В настоящее время известны сотни видов квазикристаллов, имеющих точечную симметрию икосаэдра, а также десяти-, восьми- и двенадцатиугольника.

Структура

Детерминистические и энтропийно-стабилизированные квазикристаллы

Существует две гипотезы о том, почему квазикристаллы являются (мета-)стабильными фазами. Согласно одной гипотезе, стабильность вызвана тем, что внутренняя энергия квазикристаллов минимальна по сравнению с другими фазами, как следствие, квазикристаллы должны быть стабильны и при температуре абсолютного нуля. При этом подходе имеет смысл говорить об определённых положениях атомов в идеальной квазикристаллической структуре, то есть мы имеем дело с детерминистическим квазикристаллом. Другая гипотеза предполагает определяющим вклад энтропии в стабильность. Энтропийно стабилизированные квазикристаллы при низких температурах принципиально нестабильны. Сейчас нет оснований считать, что реальные квазикристаллы стабилизируются исключительно за счёт энтропии.

Многомерное описание

Детерминистическое описание структуры квазикристаллов требует указать положение каждого атома, при этом соответствующая модель структуры должна воспроизводить экспериментально наблюдаемую картину дифракции. Общепринятый способ описания таких структур использует тот факт, что точечная симметрия, запрещённая для кристаллической решетки в трёхмерном пространстве, может быть разрешена в пространстве большей размерности D. Согласно таким моделям структуры, атомы в квазикристалле находятся в местах пересечения некоторого (симметричного) трёхмерного подпространства R D (называемого физическим подпространством) с периодически расположенными многообразиями с краем размерности D-3, трансверсальными физическому подпространству.

Правила сборки

Многомерное описание не даёт ответа на вопрос о том, как локальные межатомные взаимодействия могут стабилизировать квазикристалл. Квазикристаллы обладают парадоксальной с точки зрения классической кристаллографии структурой, предсказанной из теоретических соображений (мозаики Пенроуза). Теория мозаик Пенроуза позволила отойти от привычных представлений о федоровских кристаллографических группах (основанных на периодических заполнениях пространства).

Металлургия

Получение квазикристаллов затрудняется тем, что все они либо метастабильны, либо образуются из расплава, состав которого отличается от состава твёрдой фазы (инконгруэнтность).

Натуральные квазикристаллы

Породы с природными Fe-Cu-Al-квазикристаллами найдены на Корякском нагорье в 1979 году. Однако только в 2009 году учёные из Принстона установили этот факт. В 2011 году они выпустили статью

0

Курсовая работа

Квазикристаллы

Санкт-Петербург
2012

Содержание
1.Введение.................................................................................................... 2
2.Структура квазикристалов......................................................................... 5
2.1 Типы квазикристаллов и методы их получения.................................... 5
2.2 Методы описания структуры................................................................. 8
3. Электронный спектр и структурная стабильность................................ 14
4. Возбуждения решётки............................................................................ 17
5. Физические свойства квазикристаллов................................................. 20
5.1 Оптические свойства............................................................................ 20
5.2 Сверхпроводимость.............................................................................. 21
5.3 Магнетизм............................................................................................. 23
5.4 Теплопроводность................................................................................ 26
5.5 Механические и поверхностные свойства.......................................... 28
6. Практические применения.................................................................... 29
7. Заключение............................................................................................. 31
8. Приложение............................................................................................ 32
Список литературы
2
1.Введение
В основе симметрии кристаллической решѐтки периодически упорядоченных кристаллов лежит периодичность расположения их атомов - параллельные переносы, или трансляции на порождающие кристаллическую решѐтку основные векторы переводят решѐтку саму в себя. Трансляции элементарной ячейки на основные векторы решѐтки позволяют плотно, т.е. без зазоров и перекрытий, заполнить всѐ пространство и тем самым построить кристаллическую решѐтку. В дополнение к трансляционной симметрии, кристаллическая решѐтка может обладать и симметрией по отношению к поворотам и отражениям. Трансляционная симметрия накладывает ограничения на возможные порядки осей симметрии кристаллических решѐток. Периодически упорядоченные кристаллы могут иметь оси симметрии второго, третьего, четвѐртого или шестого порядков. Повороты вокруг осей симметрии пятого порядка и любого порядка выше шестого не переводят кристаллическую решѐтку саму в себя, поэтому такие оси симметрии для кристаллов запрещены.
В настоящее время хорошо известно, что периодичность не является необходимым условием существования дальнего атомного порядка. Квази-кристаллы обладают строго апериодическим дальним порядком квазипериодического типа. Трансляционной симметрии, ограничивающей возможные порядки осей симметрии, у квазикристаллов нет, поэтому они могут иметь оси симметрии и тех порядков, которые запрещены для обычных периодически упорядоченных кристаллов. Проиллюстрируем это обстоятельство на примере "паркета Пенроуза", представляющего собой модель решѐтки двумерного квазикристалла. Отметим, что понятие элементарной ячейки не допускает простого обобщения на квазикристаллы, поскольку для построения квазикристаллических решѐток необходимы струк-турные блоки двух или более типов. Паркет Пенроуза состоит из двух различных структурных блоков — узкого и широкого ромбов с острыми углами при вершинах π/5 и 2π/5 соответственно. Укладка паркета этими двумя ромбами, начиная с пяти широких ромбов, имеющих общую вершину, по определѐнным правилам приводит к квазипериодическому покрытию плоскости без зазоров и перекрытий. Паркет Пенроуза обладает единственной точкой, вращение вокруг которой на угол 2π/5 переводит решѐтку саму в себя, что соответствует точной оси симметрии пятого порядка. Кроме того, паркет Пенроуза обладает вращательной симметрией десятого порядка в том смысле, что поворот на угол π/5 приводит к решѐтке, отличие которой от исходной статистически несущественно, — такие решѐтки неразличимы, например, в дифракционных экспериментах. По аналогии с построением паркета Пенроуза возможно построение квазикристаллической решѐтки и в трѐхмерном случае. Одним из примеров такой решѐтки является сеть Аммана-Маккея, которая обладает икосаэдрической симметрией и представляет собой плотное заполнение пространства по определѐнным правилам вытянутыми и сплюснутыми ромбоэдрами с определѐнными углами при вершинах.
Апериодический дальний атомный порядок с икосаэдрической симметрией впервые обнаружили Шехтман, Блех, Гратиа и Кан, которые в 1984 г. сообщили о наблюдении необычных картин дифракции электронов в быстро
3
охлаждѐнном сплаве А186Мn14. Во-первых, было видно наличие дальнего порядка некристаллического типа — острые брэгговские пики при наличии оси симметрии десятого порядка, несовместимой с периодическим упорядочением. Во-вторых, интенсивность дифракционных пятен не уменьшалась с расстоянием от центра дифракционной картины, как в случае периодически упорядоченных кристаллов. В-третьих, при рассмотрении последовательности рефлексов от центра дифракционной картины к еѐ периферии оказалось, что расстояния между рефлексами связаны степенями числа τ= (√ + 1)/2 — золотого сечения (см.приложение). В-четвѐртых, если брэгговские рефлексы периодически упорядоченного кристалла индексируются тремя индексами Миллера, то описание дифракционной картины сплава А186Мn14 потребовало шести индексов. Полный анализ дифракционных картин, полученных вдоль различных кристаллографических направлений, показал наличие шести осей симметрии пятого порядка, десяти осей симметрии третьего порядка и пятнадцати осей симметрии второго порядка. Это позволило прийти к заключению о том, что структура сплава А186Мn14 имеет точечную группу симметрии ̅ ̅, т.е. группу икосаэдра.
Теоретическое обоснование существования брэгговских пиков на дифракционных картинах структуры с икосаэдрической симметрией дали Левин и Штайнхардт. Они построили модель квазикристалла, исходя из двух элементарных ячеек с иррациональным отношением их числа и показали, что дифракционная картина апериодической упаковки с икосаэдрической симметрией имеет брэгговские рефлексы на плотном множестве узлов обратного пространства с интенсивностями, которые находятся в хорошем согласии с полученными на сплаве А186Мn14. Квазикристаллическая структура может быть построена апериодической упаковкой пространства без пустот и перекрытий несколькими структурными единицами с соответствующим мотивом — атомной декорацией. Эквивалентный метод построения квазикристаллической структуры состоит в апериодической упаковке пространства атомными кластерами одного типа, перекрывающимися в соответствии с определѐнными правилами, — метод квазиячеек. Реализуются квазикристаллические структуры в металлических сплавах, причѐм реальные квазикристаллы часто представляют несовершенную, т.е. дефектную, реализацию совершенной квазикристаллической структуры в основном состоянии. Квазикристаллическая структура близка по энергии к другим структурам, и, в зависимости от условий приготовления, термообработки и состава, квазикристалл может находиться в совершенном квазикристаллическом состоянии даже без присущих ему статических искажений — фазонов, или в микрокристаллическом состоянии с длиной когерентности порядка 102Å и общей псевдоикосаэдрической симметрией.
Термин "апериодический кристалл" ввѐл Шрѐдингер в связи с обсуждением структуры гена. В физике твѐрдого тела до открытия квазикристаллов исследовались несоизмеримо модулированные фазы и композитные кристаллы с модулированной структурой, дифракционные картины которых содержат брэгговские максимумы, расположенные с обычной кристаллической симметрией, но окружѐнные сателлитными рефлексами. Было также известно о существовании икосаэдрического ближнего порядка в сплавах со сложной
4
структурой, в металлических стѐклах, в соединениях бора, содержащих связанные между собой икосаэдры В12, в анионе (В12Н12)2-, в кластерах щелочных и благородных металлов и в интерметаллических соединениях, известных сегодня как периодические аппроксиманты квазикристаллов.
Брэдли и Гольдшмидт, изучавшие медленно охлаждѐнные сплавы в тройной системе Al-Cu-Fe методом рентгеноструктурного анализа, в 1939 г. сообщили о существовании тройного соединения состава Al6Cu2Fe с неизвестной структурой, названного ими фазой ψ в 1971 г. Преварский исследовал фазовые равновесия в системе Al-Cu-Fe и показал, что фаза ψ обладает незначительной областью гомогенности и является единственной тройной фазой, существующей в этой тройной системе при температуре 800 °С. В 1987 г. Цай с соавторами показали, что сплав с составом, близким к составу ψ-фазы, представляет собой термодинамически стабильный икосаэдрический квазикри-сталл. В 1955 г. Харди и Силкок обнаружили в системе Al-Cu-Li фазу, названную ими фазой Т2, дифракционная картина которой не поддавалась индексированию. Состав этой фазы близок к Al6CuLi3 и соответствует икосаэдрической фазе Al-Cu-Li. В 1978 г. Састри с соавторами наблюдали дифракционную картину с псевдопентагональной симметрией в системе Al-Pd. Позднее в этой системе была обнаружена декагональная квазикристаллическая фаза. В 1982 г. Падежнова с соавторами сообщили о существовании в системе Y-Mg-Zn фазы R, порошковая рентгенограмма которой не была ими расшифрована; впоследствии Луо с соавторами показали, что эта фаза обладает икосаэдрической структурой.
Примечательно, что квазикристаллические сплавы содержат атомы переходных, благородных или редкоземельных металлов, что, возможно, и определяет кристаллохимию ближнего атомного порядка. Многие квазикристаллические фазы существуют на равновесной фазовой диаграмме в относительно узкой области концентраций. Равновесные термодинамические, транспортные, магнитные и механические свойства квазикристаллов, их спектры одночастичных и коллективных возбуждений отличаются от таковых для близких им по составу кристаллических и аморфных фаз. Специфика свойств квазикристаллов определяется как апериодическим дальним порядком, так и локальным атомным строением. Будучи сплавами металлических элементов, квазикристаллы не являются обычными металлами, изоляторами или полупроводниками. В отличие от изоляторов, плотность электронных состояний на уровне Ферми п() в квазикристаллах отлична от нуля, но ниже, чем у типичных металлов. К характерным особенностям электронного спектра квазикристаллов относятся псевдощель в плотности электронных состояний на уровне Ферми и тонкая пиковая структура п(Е), что отражается на их физических свойствах.
5
2.Структура квазикристаллов
2.1 Типы квазикристаллов и методы их получения
Кроме икосаэдрических квазикристаллов, существуют квазикристаллы с другой ориентационной симметрией. Аксиальные квазикристаллы показали наличие поворотных осей симметрии восьмого, десятого и двенадцатого порядков и были названы соответственно октагональными, декагональными и додекагональными фазами. Эти фазы имеют квазипериодическое расположение атомов в плоскостях, перпендикулярных осям симметрии восьмого, десятого и двенадцатого порядков. Сами же квазипериодические плоскости вдоль этих осей упакованы периодическим образом.
Сплавы А1-Мп и открытые вскоре другие квазикристаллические фазы оказались метастабильными — при нагреве они переходили в периодически упорядоченное состояние. Их можно было получить методом быстрой закалки расплава либо другими экзотическими методами. Метастабильные квазикристаллы обладали высокой степенью беспорядка, что осложнило исследования возможного влияния квазипериодичности на физические свойства. Результаты, полученные на образцах метастабильных фаз, указывали на то, что по своим физическим свойствам такие квазикристаллы близки к разупорядоченным металлам. Открытие икосаэдрической фазы А1-Сu-Li показало, что квазикристаллы могут быть по крайней мере локально устойчивыми и расти практически при равновесных условиях. В то же время анализ дифракционных картин этой и ряда других квазикристаллических фаз показал наличие в них специфических структурных дефектов — фазонов. Предполагалось, что фазоны — это неотъемлемая черта квазикристаллических структур.
Новые возможности для экспериментального исследования свойств твѐрдых тел с квазикристаллической структурой появились после открытия в тройных системах А1-Сu-Fe, А1-Сu-Ru и Аl-Сu-Os термодинамически стабильных фаз, кристаллизующихся в гранецент- рированную икосаэдрическую (ГЦИ) структуру, в которых отсутствуют фазонные искажения. Первые же эксперименты, проведѐнные на этих фазах, показали, что квазикристаллы следует причислять к отдельному и весьма необычному классу твѐрдых тел, сочетающих как свойства стѐкол, так и свойства, характерные для перио-дически упорядоченных кристаллов. Интересным объектом исследований оказалась термодинамически стабильная ГЦИ-фаза в тройной системе А1-Мn-Рd, брэгговские пики которой не уширены структурными дефектами даже без отжига. Фазовые равновесия в тройной системе А1-Мn-Рd позволяют выращивать монокристаллы икосаэдрической фазы стандартными методами, что дало возможность провести детальные исследования структуры этой фазы и еѐ свойств. Высокая степень структурного совершенства монокристаллов икосаэдрической фазы А1-Мn-Рd была подтверждена наблюдением эффекта Бормана — аномального прохождения рентгеновских лучей.
К настоящему времени обнаружено более ста систем на основе алюминия, галлия, меди, кадмия, никеля, титана, тантала и других элементов, в которых образуются квазикристаллы. Как уже говорилось, термодинамически стабильные икосаэдрические фазы могут быть получены и при нормальных условиях затвердевания. Квазикристаллы также могут быть синтезированы с
6
помощью таких методов, как конденсация из пара, затвердевание при высоком давлении, расстеклование аморфного вещества, распад пересыщенных твѐрдых растворов, межслойная диффузия, имплантация ионов, механоактивационный процесс и другие. Многие методы, которые используются для получения кристаллических и некристаллических фаз, применяются также и для синтеза квазикристаллов.
Образование квазикристаллов из расплава принципиально отличается от образования металлических стѐкол. Металлические стѐкла наиболее легко образуются вблизи эвтектического состава. Это составы, при которых ни одна кристаллическая фаза не является стабильной, так что в равновесии сплав должен распадаться на две или большее количество кристаллических фаз различного состава. В связи с тем, что химическое расслоение является диффузионно-контролируемым процессом, этот процесс является метастабильным, и быстрое охлаждение расплава способствует образованию металлического стекла. Квазикристаллы, напротив, не образуются вблизи составов, близких на фазовой диаграмме к эвтектическому. Отличительной чертой равновесных фазовых диаграмм систем, в которых образуются квазикристаллические фазы, является наличие перитектики. Эти особенности фазовых диаграмм типичны для систем, где имеются сильные взаимодействия между различными атомными составляющими и тенденция к образованию соединений. Квазикристаллы образуются в этих системах путѐм формирования центров зарождения и последующего роста.
Ещѐ одним свойством, свидетельствующим о дальнем порядке в расположении атомов в квазикристаллах, является существование огранки наблюдаемых фаз. Морфология квазикристаллической фазы зависит от условий роста, обнаруживая при этом ряд интересных особенностей. Когда в результате синтеза образуется квазикристаллическая фаза, морфологически часто отражается только еѐ точечная группа симметрии. Например, форма дендритов метастабильной икосаэдрической фазы Al-Mn — пентагональный додекаэдр. Дендриты же термодинамически стабильной икосаэдрической фазы в системе Al-Cu-Li имеют огранку в форме ромбического триаконтаэдра. В системе Al-Pd-Mn икосаэдрические квазикристаллы ограняются в виде икосидодекаэдра. Исследование формирования огранки икосаэдрической фазы в системе Al-Cu-Fe показало, что грани формируются вдоль плотных атомных плоскостей в соответствии с требованием минимума поверхностных напряжений.
Несмотря на то, что чистые металлы, как правило, кристаллизуются с образованием простых структур, сплавление может приводить к образованию интерметаллических соединений с довольно сложной структурой. Так, например, две сложные кристаллические фазы α-Mn12(Al,Si)57 и Mg32(Al,Zn)49 обнаруживают локальный изоморфизм со структурой соответствующих ква-зикристаллов. Каждое из упомянутых соединений представляет объѐмноцентрированную кубическую (ОЦК) упаковку кластеров, состоящих из концентрических атомных оболочек с икосаэдрической симметрией и содержащих 54 атома в первом случае (икосаэдрический кластер Маккея) и 44 атома во втором (триаконтаэдрический кластер Бергмана). Подобные соединения называются периодическими аппроксимантами квазикристаллов.
7
Существует и третий вид кластера (кластер Цая), содержащий 66 атомов — ОЦК-упаковка таких кластеров типична для кристаллических сплавов типа Cd6Yb, Zn17Sc3, являющихся периодическими аппроксимантами соответствующих бинарных квазикристаллов. Исследования структуры с помощью просвечивающей электронной микроскопии высокого разрешения показали, что кластерное строение характерно и для квазикристаллов, однако кластеры упакованы апериодически в пространстве и являются взаимопроникающими, так что квазикристаллы являются не простым кластер-ным агрегатом, а структурой с апериодическим дальним порядком и локальным кластерным строением.
На тесную связь структуры аппроксимант и квазикристаллов указывает сходство их дифракционных картин. Наиболее интенсивные дифракционные пики кристаллических аппроксимант расположены вблизи аналогичных пиков родственных им квазикристаллов. Ещѐ одним указанием на локальный изоморфизм квазикристаллов и соответствующих аппроксимант является когерентная ориентационная связь их зѐрен. Квазикристаллы часто образуются вблизи состава аппроксимант, поэтому одним из способов поиска новых квазикристаллических соединений является исследование композиционных областей вблизи составов их кристаллических аппроксимант.
8
Рис. 2.1 Двухфрагментная модель
двумерного кристалла - паркет Пенроуза,
составленный из узких и широких ромбов.
2.2 Методы описания структуры
Апериодические структуры, приводящие к острым брэгговским рефлексам, например паркет Пенроуза, рассматривались ещѐ до 1984 г. Эти структуры в своей основе обладают дальним порядком ориентационного типа. Для описания дифракционных свойств квазикристаллических объектов рассматривались структуры, носящие названия квазипериодических покрытий, или замощений плоскости и пространства.
Покрытием прямой называется еѐ разбиение на отрезки из заданного набора. Среди получающихся таким образом покрытий выделяют класс квазипериодических покрытий, у которых отсутствует дальний порядок трансляционного типа. Именно они используются для структурных моделей квазикристаллов.
Среди предложенных моделей остова структуры квазикристаллических объектов самой распространѐнной, по-видимому, следует считать двухфрагментарную модель, основанную на квазипериодическом покрытии прямой, плоскости или пространства двумя элементарными структурными единицами. Для одномерного квазикристалла данная модель приводит к последовательности Фибоначчи коротких S и длинных L отрезков с S=1 и L=τ. В двумерном случае двухфрагментарная модель представляет собой паркет Пенроуза, составленный из ромбов двух типов с острыми углами при вершинах π/5 и 2π/5(рис 2.1), а в трѐхмерном — образуемое ромбоэдрами двух типов обобщение паркета Пенроуза, называемое сетью Аммана-Маккея. Общим для перечисленных выше реализаций двухфрагментарной модели является отсутствие дальнего порядка транс-ляционного типа при сохранении дальнего порядка ориентационного типа, что приводит к свойству, известному в случае паркета Пенроуза как теорема Конвея: любая конечная конфигурация паркета встречается в нѐм квазипериодически бесконечное число раз.
9
Рис.2.2 Построение одномерного квазикристалла
(цепочки Фибоначчи) проекционным методом; угол
наклона оси

Аудитория залипает на ковёр Структура квазикристалла

Уже два раза Нобелевскую премию дают за вещества, которых не должно быть. Первый раз это был графен, в который никто не верил, второй раз - квазикристаллы , которые, по классической теории, вообще не могут существовать.

Не могут, но упорно существуют.

О практическом применении кристаллов, думаю, рассказывать на Хабре не нужно. Квазикристаллы имеют схожую область применения, плюс обладают двумя важными свойствами - во-первых, способны укреплять композитные материалы (например, для получения сверхпрочных сталей - иголки для операций по глазам), а, во-вторых, при охлаждении квазикристалл становится изолятором, а при нагреве - проводником. Естественно, большие перспективы в LED-технологиях и вообще во всём, что начинается на «нано» в хорошем смыле этого слова.

На прошлой неделе в Digital October прошла лекция Пола Стейнхардта - учёного, который съездил на Чукотку в поисках естественных квазикиристаллов и прошел целую детективную историю, чтобы получить образцы.

Но начнём сначала.

Что такое квазикристалл?

По сути - это сложно «упакованное» вещество, обладающее регулярной структурой. Отличие от обычных кристаллов в том, что эта структура не должна существовать по целому списку причин. Было уже доказано, что возможна симметрия второго, третьего, четвертого и шестого порядка, а для других случаев, она в общем-то, невозможна. Во всяком случае, так считали раньше. Для примера - привычная структура кристаллической решетки углерода даёт алмаз. Гексагональная структура даёт графит, который отличается другими свойствами.

С другой стороны, невозможно, например, правильными пятиугольниками замостить какую-то плоскость, точно так же это считалось невозможным и для десятиугольников. Правда, в 1982 году Шехтман (который в 2011 получил Нобелевскую премию по химии) показал, что предыдущие представления были неправильные.


Компоненты квазикристалла на модели

Как получается упаковать вещество так плотно?

Использованием различных структур. Грубо говоря, это не только пятиугольники, но и другие формы, которые встречаются с разной частотой. И соотношение между этими частотами не является рациональным числом, то есть его нельзя описать как взаимоотношение двух целых чисел. Соответственно, так появился термин «квазикристаллы», или «квазипериодические кристаллы», или «квазипериодические твердые тела».


Сборка квазикристалла

С 1984 года было получено в лабораториях более 100 различных квазикристаллов, но считалось, что в природе образование таких веществ просто невозможно, поскольку структура крайне нестабильна. А теперь самое весёлое - Стейнхардт нашел именно природный образец.


Ещё один ковёр

Где он его нашел?

В одном местном русском музее за пределами основного каталога. Образец «хатыркит» был найден на берегу реки Хатырки, в автономном округе Чукотка на Корякском нагорье.
И вот с этим кусочком мы несколько лет и пытались работать. Там уже начиналась зима 2008 года. В общем, мы разрезали имевшийся образец. Совсем тонкие срезы, как вы видите, полмикрометра. И мы рассчитывали, что мы получим доступ к хорошим спектрометрам и хорошим микроскопам. Но нам сказали, что они уже забронированы другими исследователями на следующие три месяца. Но я смог договориться с директором рентгенографического центра в университете, и мы с ним вместе пришли в лабораторию в пять утра в Рождество. Нам семья это не могла простить в то время, но мы понимали, что если мы не пойдем в этот день, то придется ждать еще три месяца. И меня поразило то, что мы увидели. Потому что когда мы поместили в электронный микроскоп этот образец, мы сразу увидели дифрактограмму. Совершенно фантастическую, практически идеальную дифрактограмму настоящего квазикристалла.

Как эта структура появилась внутри камня?

Пол понёс данные геофизикам, которые объяснили, что такое невозможно, потому что сплав алюминия, меди и железа должен был окислиться в естественных условиях. Собственно, физики попытались объяснить, что находка - это не естественное образование, а кусок техногенного мусора, оставшегося от русского аффинажного завода или ядерного реактора (ну, знаете, они там на каждом шагу). У Пола появилось две теории: про образование материала на большой глубине (где кислорода не очень-то много) или в космосе (где его ещё меньше). Требовалось найти ещё образцы, чтобы убедиться в природном происхождении квазикристаллов.


Сборки и разборки

Что дальше?

Дальше - полтора года поисков, детектив с поиском членов первой экспедиции, выход на одного человека из них, часы в лабораториях, подтверждение теории о метеоритном происхождении материалов - и снаряжение второй экспедиции в Анадырь, где был найден хатыркит.
Первые данные анализа показали, что мы действительно подобрали очень хорошие материалы метеоритного происхождения. Вот видите, по центру этого камня такой блестящий образец, кусочек, который полностью соответствовал и химическому составу, который мы искали, и имел дифрактограмму, соответствующую квазикристаллу. И минерал, который мы нашли, мы назвали икосаэдритом, поскольку он имел дифрактограмму, полностью соответствующую правильной икосаэдрической решетке. Конечно, эта наша экспедиция и тот факт, что мы лично откопали все эти образцы, добавили убедительности нашим исследованиям в глазах научного сообщества. Если вы покажете эти данные специалистам по метеоритам, они вам сразу скажут, что это такое. Это типичный пример метеорита типа CV3, или углистого хондрита. Причем по центру этого хондрита вы видите блестящий кусочек, который раньше мы никогда не находили в природе. Трудно на данном этапе решить, когда сформировался данный квазикристалл. То ли он имеет тот же возраст, что и окружающая его порода, около 4,5 миллиардов лет, то ли он сформировался… Но мы сейчас эту тему копаем. Мы сейчас исходим из того, что возник этот квазикристалл на заре существования Солнечной системы, много миллиардов лет назад, при столкновении метеоритов. Мы предполагаем, что метеорит этот упал в бассейн Хатырки относительно недавно, может быть, порядка 10 тысяч лет назад. Как раз во время последнего ледникового периода. Как раз тогда, когда по этому ручью спускались вниз с какими-то ледяными массами глинистые породы. Мы продолжаем свою работу, хочется надеяться, что откроем еще какие-то тайны.


Обсуждение: ведущие российские специалисты в области

К свойствам квазикристаллов, которые представляют интерес с точки зрения практических применений, относятся низкий коэффициент трения и низкая "смачиваемость, высокие твердость, износо- и коррозионная стойкость, значительная радиационная стойкость структуры, низкие электро- и теплопроводность и необычные оптические свойства. Но возможности использования ограничены из-за высокой хрупкости и низкой деформируемости при низкой температуре.

Таким образом, квазикристаллы можно использовать как покрытия на сковородки, в качестве рабочей поверхности для приготовления пищи . Покрытие на основе икосаэдрической фазы Al-Cu-Fe является универсальным для обжаривания мяса. Не выделяют токсичных газообразных продуктов при перегреве, в отличие от тефлоновых покрытий.

Есть возможность применения квазикристаллов в селективных поглотителях солнечной энергии. Т.е. для преобразования солнечного излучения в тепло. Селективные поглотители применяют для нагрева воды до температур 400 оС и 60 оС соответственно в тепловых генераторах электрической энергии и в бытовых водонагревателях. Идеальный селективный поглотитель солнечного излучения должен обладать высоким коэффициентом поглощения в видимой области спектра и одновременно высоким коэффициентом отражения в инфракрасном диапазоне для того, чтобы минимизировать потери на тепловое излучение. Одним из лучших поглотителей является вольфрам. Селективность на уровне, имеющем практическое значение, может быть достигнута только в устройствах, сочетающих материалы с различными оптическими свойствами. К таким устройствам, относятся, в частности, тандемные системы типа поглотитель/отражатель и многослойные интерференционные фильтры. Результаты экспериментальных исследований оптических свойств "сэндвичаAl2O3/Al62Cu25Fe13/ Al2O3 на медной подложке подтвердили теоретические расчеты, такой поглотитель способен поглощать 90% солнечного излучения и переизлучать при комнатной температуре всего 2,5% поглощенной энергии. Эти поглотители устойчивы к окислению в интервале температур 400-500 градусов, а также у них высокая термическая стабильность и коррозионная стойкость.

Квазикристаллы можно использовать как термоэлектрические преобразователи для применения в твердотельных холодильниках и генераторах электрической энергии. Квазикристаллы обладают низкой электропроводностью, которая, как правило растет с увеличением температуры и сильно меняется даже при незначительных химического состава, такую же чувствительность к составу проявляют коэффициенты Зеебека и Холла. Их важное достоинство состоит в том, что их решеточная теплопроводность крайне низка и близка по величине к теплопроводности диэлектрических стекол. (Выше 100 К решеточная теплопроводность достигает типичных для аморфных материалов величин порядка 1 Вт/м?К, что соответствует режиму минимальной теплопроводности решетки). Особенности электронной структуры квазикристаллов позволяют достичь предел параметра эффективности термоэлектрического преобразователя = 1 и существенно его превзойти.

Металлогидридные системы хранения водорода относятся к числу наиболее активно развивающихся областей водородной энергетики . Среди квазикристаллических фаз перспективной средой хранения водорода оказалась икосаэрическая фаза в тройной системе Ti-Zr-Ni, способная поглощать почти два атома водорода на каждый атом металла. Эта фаза быстро поглощает и выделяет водород лучше, чем такие интерметаллические соединения, как LaNi5. Водород может накапливаться практически в атомном виде и в этом существенное преимущество по сравнению с гидридами, где водород находится в связанном виде.

Распространение получили квазикристаллические "конструкции" создаваемые молекулярно-лучевым напылением и литографией: сверхрешетки Фибоначчи, используемые в лазерной технике для генерации высших гармоник, фотонные квазикристаллы с октагональной и пентагональной симметрией, обладающие изотропной запрещенной зоной.

Основные выводы

Квазикристаллы и материалы на их основе имеют большой потенциал промышленного применения. Разработанные к настоящему времени технологии получения покрытий из квазикристаллов, а также многофазных и композитных материалов на их основе позволили полностью устранить ограничения, связанные с хрупкостью квазикристаллических фаз и их низкой деформируемостью при комнатной температуре. Квазикристаллы уже нашли широкое применение как упрочняющая фаза в высокопрочной мартенситно-стареющей стали, из которой производятся хирургические инструменты, и в особо прочных алюминиевых сплавах. В ближайшие годы следует ожидать значительного прогресса в области промышленного применения квазикристаллических материалов.

Исследование нового свойства имеет как научное значение – определение закономерностей формирования квазикристаллов в различных минералах, рудах и нерудных полезных ископаемых, так и прикладное значение – прогнозирование нарушенных зон в углях, на границах блоков разных масштабных уровней, приуроченность к этим зонам повышенной рудоносности (особенно в узлах – местах пересечения зон трещиноватости), влияние указанных зон и условий формирования в них квазикристаллов на способы отработки и последующеее обогащениее полезных ископаемых. Структурирование вещества и формирование квазикристаллов – эта два взаимосвязанных процесса, отражающих условия образования и преобразования горной породы и вмещаемых минералов.

Список использованной литературы

1.Shechtman D., Blech I., Graitias D. e. a. // Metallic phase with long-range orientational order and no translational symmetry. - Phys. Rev. Lett. - 1984 - №53 - pp. 1951-1953

2.A. P. Tsai, A. Inoue, T. Mashimoto // Jpn. J. Appl. Phys. - 1987 - 26 - L1505

3.G. Bergman, J. L. T. Waugh and L. Pauling // Acta Crystallogr. - 1957 - 10 - 254

E. E. Cherkashin, P.I. Kripyakevich and G.I. Oleksiv // Sov. Phys. Crystallogr. - 1964 - 8 - 681

5.P. Donnadieu, A. Redjaimia // Phil. Mag. B - 1993 - 67 - 569

6.A.I. Goldman, P. F. Kelton // Rev. Mod. Phys. - 1993 - 65 - 213

H. S. Chen, J. C. Phillips, P. Villars, A. R. Kotran, A. Inoue // Phys. Rev. B 1987 - 35 - 9326

8.Tsai A. P., Inoue A. e. a. // Phil. Mag. Lett. - 1990. - V.61. - p.9

9.Tsai A. P., Inoue A., Masumoto T. // Appl. Phys. - 1998. - V.26. - p.1505 - 1587

Akiyama H., Hahsimoto T., Shibuya T. e. a. // Phys. Soc. Jpn. - 1993. - V.62. - p.639

Huttunen-Saarivirta E. // J. of Alloys and Compounds. - 2004. - V.363. - PP.150 - 174

12. Векилов Ю.Ч., Исаев Э.И. Структура и физические свойства квазикристаллов // Сборник докладов первого всероссийского совещания по квазикристаллам. - М. - 2003 - с.5

13.Баранов В.А. Результаты исследований квазикристаллов различных веществ под электронным микроскопом / В.А. Баранов // Геотехническая механика. –Днепропетровск, 2001.–№ 27.– С.140–144.

14.Ahlgren M., Rodmar M., Gignoux C. e. a. // Mater. Sci. Eng. - 1997. - A 226 - 228. - PP.981 - 992

15.Ritsch S., Beeli C. e. a. // Phil. Mag. Lett. - 1998 - vol.78, no.2 - p.67

De Palo S., Usmani S., Sampath S. e. a. Friction and Wear Behaviour of Thermally Sprayed Al-Cu-Fe Quasicrystal Coatings // A United Forum For Sientific and Technological Advances. - Ohio, 1997

17.A. P. Tsai, A. Inoue, T. Masumoto // Jpn. J. Appl. Phys. - 1987 - 26 - L1505

18.A. P. Tsai, A. Inoue, T. Masumoto // Jpn. J. Appl. Phys. - 1988 - 26 - L1587

Tsai A. P., Yokoyama Y., Inoue A., and Masumoto T. // Jpn. J. Appl. Phys. - 1990 - 29 - L1161

S. J. Poon // Adv. Phys. - 1992 - 41 - 303

P. Lanco, C. Berger, F. CyrotLackmann and A. Sulpice // J. Non-Cryst. Solids - 1993 - 153154 - 325

F. S. Pierce, S. J. Poon, and Q. Gou // Science - 1993 - 261 - 737

H. Akiyama, Y. Honda, T. Hasimoto, K. Edagava, and S. Takeuchi // Jpn. J. Appl. Phys. - 1993 - 32 - L1003

24.Брязкало А.М., Ласкова Г.В., Михеева М.Н. и др. Исследование динамики образования квазикристаллической фазы в системе Al-Cu-Fe с помощь мессбауровской спектроскопии // Сборник докладов первого всероссийского совещания по квазикристаллам. - М., 2003. - С.39 - 45

25.C. Gignoux, C. Berger, G. Fourcaudot, J. C. Grieco and H. Rakoto // Europhys. Lett. - 1997 - 39 (2) - p.171

Martin S., Hebard A. F., e. a. // Phys. Rev. Lett. - 1991 - vol.91, no.6 - p.719

27.Wagner J. L. et al. // Phys. Rev. B - 1988 - 38 - p.7436

28.Kimura K. et al. // J. Phys. Soc. Jpn. - 1989 - 58 - p.2472

29.Wagner J. L., Biggs B. D., Poon S. J. // Phys. Rev. Lett. - 1990 - 65 - p. 203

Ziman J. M. Principles of the Theory of Solids (Camb. Univ. Press. Cambridge, 1972) - p.225

Howson M. A., Gallagher B. L. // Phys. Rep. - 1988 - 170 - p.265

F. Cyrot-Lackmann // Solid State Commun. - 1997 - 103 - 123

Yu. Kh. Vekilov et. al. // Solid State Commun. - 2005 - 133 - 473

Chernicov M. A., Bianchi A., Ott H. R. // Phys. Rev. B - 1995 - 51 - p.153

35.Chernicov M. A. et al. // Europhys. Lett. - 1996 - 35 - p.431

36.Kuo Y. K. et al. // Phys. Rev. B - 2005 - 72 - p.054202

Vekilov Yh. Kh., Isaev E.I., Johasson B. // Phys. Lett. A - 2006 - 352 - p.524

Perrot A. et al. in Ref. Quasicrystals. Proceeding of the 5th International Conference - p.588

39.Peierls R. // Ann. Phys. Bd.3. H.3, S.1055 (1929)

40.Hattori Y. et al. // J. Phys.: Condens. Matter. - 1995 - 7 - 2313