Фффхи мгу: приемная комиссия, проходной балл, программы обучения, отзывы. факультет фундаментальной физико-химической инженерии мгу

Образование на факультете фундаментальной физико-химической инженерии - это новая форма инженерного образования, отвечающая требованиям времени и вызовам науки XXI века. Обучение на факультете призвано усилить технологическую составляющую классического естественнонаучного образования, нацелено на реализацию инновационной междисциплинарной подготовки специалистов в области физики, химии и биологии.

Для занятий научными исследованиями в базовых институтах РАН (Институт физики твёрдого тела РАН и Институт проблем химической физики РАН) под руководством персонального научного наставника на 1-3 курсах в учебном расписании выделен 1 день в неделю, с 4 курса — 2 дня в неделю. Проведение научных исследований формализовано в рамках выполнения курсовых работ.

Многие курсовые работы доводятся до уровня законченной научной работы, и студенты представляют эти работы на научных конференциях и в качестве публикаций в научных журналах. Для каждого студента темы курсовых работ по разделам химии, физики и междисциплинарным тематикам подобраны таким образом, чтобы все работы были объединены общей задачей и выполнялись в одной лаборатории. Это позволяет накопить значительный экспериментальный материал для выполнения дипломной, а затем и кандидатской работы.

Междисциплинарная учебная подготовка на факультете (физика + химия + биология) позволяет эффективно внедрять студентов в проведение научной работы по междисциплинарным тематикам стратегических направлений технологического прорыва, определённых Президентом РФ: «Энергоэффективность, энергосбережение и разработка новых видов топлива» и «Медицинские технологии, диагностическое оборудование и новые лекарственные средства». Актуальность научных тематик является обязательным условием научной работы студентов.

На факультете активно внедряются современные образовательные технологии и интерактивные сервисы, позволяющие без снижения качества образования снизить аудиторную нагрузку и увеличить долю самостоятельной работы студентов, превратить слушателей в активных участников процесса обучения, увеличить удельный вес индивидуальных контактов с преподавателем и создать индивидуальную образовательную траекторию для каждого студента. К преподаванию на факультете активно привлекаются учёные РАН, имеющие опыт преподавательской работы. Учебные курсы преподавателей факультета мобильно обновляются и идут в ногу со временем, интересны, активно воспринимаются, т.к. снабжены примерами из реальной научной практики и демонстрационным экспериментом. Это возбуждает интерес студентов к предмету и ведёт к более глубокому и полному усвоению материала.

Декан - академик РАН Алдошин Сергей Михайлович

В настоящее время в России остро стоит вопрос об интеграции образования, фундаментальных научных исследований и наукоемких производств, без которых невозможно существование высокоразвитого, экономически независимого государства. Один из наиболее перспективных путей решения этого вопроса - сочетание фундаментального университетского образования студентов со специализацией на базе активно действующих научно-исследовательских центров Российской академии наук (РАН). Этот принцип заложен в основу организации учебного процесса факультета.

На факультете студенты обучаются на трех отделениях: инженерная физика твёрдого тела (направление подготовки «Прикладные математика и физика»); инженерная химическая физика(специальность «Фундаментальная и прикладная химия»); инженерия материалов для авиации и космоса (специальность «Фундаментальная и прикладная химия»).

Для занятий научными исследованиями в базовых институтах РАН (Институт физики твёрдого тела РАН и Институт проблем химической физики РАН) под руководством персонального научного наставника на 1–3 курсах в учебном расписании выделен 1 день в неделю, с 4 курса - 2 дня в неделю. Проведение научных исследований формализовано в рамках выполнения курсовых работ. Многие курсовые работы доводятся до уровня законченной научной работы, и студенты представляют эти работы на научных конференциях и в качестве публикаций в научных журналах. Для каждого студента темы курсовых работ по разделам химии, физики и междисциплинарным тематикам подобраны таким образом, чтобы все работы были объединены общей задачей и выполнялись в одной лаборатории. Это позволяет накопить значительный экспериментальный материал для выполнения дипломной, а затем и кандидатской работы. Междисциплинарная учебная подготовка на факультете (физика + химия + биология) позволяет эффективно внедрять студентов в проведение научной работы по междисциплинарным тематикам стратегических направлений технологического прорыва, определённых Президентом РФ: «Энергоэффективность, энергосбережение и разработка новых видов топлива» и «Медицинские технологии, диагностическое оборудование и новые лекарственные средства». Актуальность научных тематик является обязательным условием научной работы студентов.

На факультете активно внедряются современные образовательные технологии и интерактивные сервисы, позволяющие без снижения качества образования снизить аудиторную нагрузку и увеличить долю самостоятельной работы студентов, превратить слушателей в активных участников процесса обучения, увеличить удельный вес индивидуальных контактов с преподавателем и создать индивидуальную образовательную траекторию для каждого студента. К преподаванию на факультете активно привлекаются учёные РАН, имеющие опыт преподавательской работы. Учебные курсы преподавателей факультета мобильно обновляются и идут в ногу со временем, интересны, активно воспринимаются, т.к. снабжены примерами из реальной научной практики и демонстрационным экспериментом. Это возбуждает интерес студентов к предмету и ведёт к более глубокому и полному усвоению материала.

Образование на факультете фундаментальной физико-химической инженерии — это новая форма инженерного образования. Обучение призвано усилить технологическую составляющую классического естественнонаучного образования, нацелено на реализацию инновационной междисциплинарной подготовки специалистов в области физики, химии и биологии и соединяет:

· фундаментальное университетское образование, нацеленное на знание и понимание основных научных принципов с их объяснениями; · инженерное образование и подготовку специалистов для реализации инновационных научных и инженерных идей на практике; · непрерывную научную работу студентов, начиная с 1 курса, в базовых институтах РАН, на инжиниринговых и технологических площадках факультета.

Образовательный процесс на факультете направлен на подготовку на основе физических и химических знаний высококвалифицированных специалистов, способных конструировать процессы, методики, реакции и технологии, обеспечивающие создание новых веществ, материалов и комплексных искусственных систем с заданными свойствами. Областями профессиональной деятельности выпускника факультета, в частности, являются:

· энергоэффективность и энергосбережение, включая вопросы разработки новых перспективных энерго-, био- и химических технологий (альтернативные источники энергии, экологически чистые энерго- и ресурсосберегающие технологии преобразования энергии, ростовые технологии); · инженерная физика твёрдого тела, в частности, инженерия новых перспективных материалов с заданными функциональными (электрическими, оптическими, магнитными и т. п.) свойствами; разработка новых технологий получения таких материалов и устройств на их основе; · прикладные проблемы физики и химии горения и взрыва, кинетики сложных химических реакций и высокотемпературных процессов; · инженерия конструкционных материалов для авиации и космоса; · современные технологии глубокой переработки углеводородов в ценные нефтехимические продукты, разработки и модернизации процессов получения важнейших нефтехимических продуктов на основе нефтяного и не нефтяного сырья.

Инженерная составляющая образовательного процесса предполагает изучение предметов блока инженерных дисциплин и дисциплин по инженерной инноватике, в частности, таких как: материаловедческие основы конструирования, компьютерное моделирование технологических процессов и установок, расчёт и конструирование пилотных установок, управление знаниями, основы инновационной деятельности, менеджмент инноваций в промышленности. На базе фундаментальной университетской подготовки, получаемой на факультете (в учебный план включены предметы математического, физического, химического и биологического блоков), опыта научной работы и в результате освоения дисциплин инженерного и инновационного блоков студент становится подготовленным к решению главной задачи инновационной инженерной деятельности: он овладевает умением комбинировать фундаментальные и прикладные знания из смежных областей (физика, химия, биология) и использовать их неожиданным образом в практических целях для решения конкретной задачи.

  • 7. Зависимость тепловых эффектов химических реакций от температуры. Уравнение Киргоффа. Определение реакции при нестандартной температуре.
  • 9. Работа расширения для идеальных газов при адиабатическом процессе. Вывести уравнения адиабат.
  • 11. II закон термодинамики для обратимых и необратимых процессов. Свойства энтропии.
  • 12.Расчет изменения энтропии для различных физико-химических процессов: нагревание, фазовые переходы, смешение идеальных газов, изобарный, изотермический, изохорныйпроцессы.
  • 13. Расчет изменения энтропии реакции при стандартной и нестандартной температурах (на примере реакций с участием неорганических веществ)
  • 14.Изохорно-изотермический потенциал, его свойства, применение в качестве критерия направленности процесса.
  • 15. Изобарно-изоэнтропийный потенциал, его свойства, применение в качестве критерия направленности процесса.
  • 16) Изобарно-изотермический потенциал, его свойства, применение в качестве критерия направленности процесса
  • 17. Изохорно-изоэнтропийный потенциал, его свойства, применение в качестве критерия направленности процесса.
  • 17. Изохорно-изоэнтропийный потенциал, его свойства, применение в качестве критерия направленности процесса.
  • 18) Уравнение Гиббса – Гельмгольца. Определение изменения энергии Гиббса реакции при не стандартной температуре.
  • 19) Химический потенциал, определение, условие равновесия в открытых системах. Химический потенциал идеальных и реальных систем (газы, растворы).
  • 20) Химическое равновесие, вывод уравнения изотермы химической реакции. Определение стандартного значения константы равновесия реакций.
  • 23) Влияние температуры на константу равновесия, вывод уравнения изобары Вант- Гоффа. Принцип Ле- Шателье.
  • 25) Расчёт теп.Эф х.Р. На основе изобары Вант-Гоффа (расчётный и граф. Способы).
  • 26) Расчёт теп.Эф х.Р. На основе изохоры Вант-Гоффа (расчётный и граф. Способы).
  • 27)Фазовые равновесия основные опр-я:
  • 28)Равновесие чис-го в-ва в 2-х фазах одноком.Сис-мы.
  • 29) Определение теплоты спарение расчетным и графическим способами на основе уравнения Клаузиуса – Клапейрона.
  • 30) Гетерогенное равновесие. Бинарные системы. Законы Рауля. Законы Коновалова.
  • 31) Основные понятия химической кинетики: скорость, механизм реакции.
  • 32) Основной постулат химической кинетики. Гомогенные, гетерогенные реакции. Порядок и молекулярность реакции, отличая между ними.
  • 33) Влияние концентрации на скорость химической реакции. Физический смысл, размерность константы скорости.
  • 34) Кинетический анализ необратимых реакций первого порядка в закрытых системах.
  • 35) Кинетический анализ необратимых реакций второго порядка в закрытых системах.
  • 36) Кинетический анализ необратимых реакций нулевого порядка в закрытых системах.
  • 37)Реакции 3-ого порядка
  • 41. Влияние температуры на скорость химической реакции, правило Вант-Гоффа, закон Аррениуса.
  • 42. Энергия активации, ее физический смысл. Методы определения энергии активации.
  • 43.Катализ, основные свойства катализатора
  • 44. Биогенные каталитические реакции. Кинетический анализ гомогенной каталитической реакции.
  • 45. Электрохимия, особенности электрохимических реакций.
  • 48. Приближения теории Дебая – Гюккеля, их концентрационные пределы применимости.
  • 49) Основы теории электролитической диссоциации
  • 50) Основные достоинства и недостатки тэд Аррениуса. Энергия кристаллической решетки, энергия сольватации.
  • 51) Свойства буферных растворов, определение их рН, буферная емкость, диаграмма.
  • 52) Определение рН гидратообразования и произведения растворимости гирооксидов металлов.
  • 53. Удельная электропроводность растворов электролитов, зависимость от температуры и концентрации.
  • 54. Молярная электропроводность. Закон Кольрауша. Определение молярной электропроводности при бесконечном разбавлении растворов сильных и электролитов.
  • 55. Молярная электропроводность. Влияние температуры и концентрации на молярную электропроводность растворов сильных и слабых электролитов.
  • 56. Электролиз, законы электролиза. Электролиз водных растворов солей с инертным анодом (привести пример).
  • 57. Определение стандартного значения электродных потенциалов. Уравнение Нернста для определения эдс цепей.
  • 58. Классификация электродов, правила записи электродов и цепей.
  • 59.Химические цепи(гальванический элемент), их классификация.
  • 60.Гальванический элемент. Термодинамика гальванического элемента.
  • 1. Физическая химия: цель, задачи, методы исследования. Основные понятия физической химии.

    Физ. химия - наука о закономерностях хим.процессов и хим. явлений.

    Предмет физ.химии объяснение хим. явлений на основе более общих законов физики. Физ.химия рассматривает две основные группы вопросов:

    1. Изучение строения и свойств вещества и составляющих его частиц;

    2. Изучение процессов взаимодействия веществ.

    Физ.химия ставит целью изучение связей м/у хим-ми и физ-ми явлениями. Знание таких связей необходимо для того, чтобы глубже изучить хим.реакции, протекающие в природе и используемые в технолог. процессах, управлять глубиной и направлением реакции. Основной целью дисциплины Физ.химия изучение общих связей и закономерностей хим. процессов, основанных на фундаментальных принципах физики. Физ.химия применяет физ. теории и методы к хим.явлениям.

    Она объясняет ПОЧЕМУ и КАК происходят превращения веществ: хим. реакции и фазовые переходы. ПОЧЕМУ – хим.термодинамика. КАК- химическая кинетика.

    Основные понятия физ.химии

    Основной объект хим. термодинамики –это термодинамическая система. Термодинамич. система – любое тело или совокупность тел, способных обмениваться м/у собой и с др. телами энергией и в-вом. Системы подразделяют на открытые, закрытые и изолированные. Открыт ая - термодинамическая система обменивается с внешней средой и в-вом и энергией. Закрыт ая -система, в которой отсутствует обмен в-вом с окружающей средой, но она может обмениваться с ней энергией. Изолированн ая -система объем остается постоянным и лишена возможности обмениваться с окружающей средой и энергией и в-вом.

    Система может быть гомогенной (однородной) или гетерогенной (неоднородной ). Фаза - это часть системы, которая в отсутствии внешнего поля сил обладает одинаковым составом во всех своих точках и одинаковыми термодинамич. св-вами и отделена от других частей системы поверхностью раздела. Фаза всегда однородна, т.е. гомогенна, поэтому однофазная система называется гомогенной. Система, состоящая из неск-ких фаз, называется гетерогенной.

    Свойства системы подразделить на две группы: экстенсивные и интенсивные.

    В термодинамике используются понятия равновесных и обратимых процессов. Равновесным –это процесс, проходящий через непрерывный ряд состояний равновесия. Обратимый термодинамический процесс – это процесс, который может быть проведен в обратном направлении без того, чтобы в системе и окружающей среде остались какие-либо изменения.

    2. I-ый закон термодинамики. Внутренняя энергия, теплота, работа.

    Первое начало термодинамики непосредственно связано с законом сохранения энергии. Исходя из этого закона, следует, что в любой изолированной системе запас энергии остается постоянным. Из законасохранения энергии вытекает еще одна формулировка первого начала термодинамики – невозможность создания вечного двигателя (perpetuum mobile) первого рода, который производил бы работу, не затрачивая на это энергии. Особенно важной для химической термодинамики формулировкой

    первого начала является выражение его через понятие внутренней энергии: внутренняя энергия является функцией состояния, т.е. её изменение не зависит от пути процесса, а зависит только от начального и конечного состояния системы. Изменение внутренней энергии системы U может происходить за счет обмена теплотой Q и работой W с окружающей средой. Тогда из закона сохранения энергии следует, что полученная системой извне теплота Q расходуется на приращение внутренней энергии ΔU и работу W, совершенную системой, т.е. Q = ΔU +W . Данное у равнение является

    математическим выражением первого начала термодинамики.

    I начало термодинамики его формулировки:

    в любой изолированной системе запас энергии остается постоянным;

    разные формы энергии переходят друг в друга в строго эквивалентных количествах;

    вечный двигатель (perpetuum mobile ) первого рода невозможен;

    внутренняя энергия является функцией состояния, т.е. её изменение не зависит от пути процесса, а зависит только от начального и конечного состояния системы .

    аналитическое выражение: Q = D U + W ; для бесконечно малого изменения величин d Q = dU + d W .

    1-ое начало термодинамики устанавливает соотнош. м/у теплотой Q, работой А и изменением внутр. энергии системы ΔU. Изменение внутр. энергии системы равно кол-ву сообщенной системе теплоты минус кол-во работы, совершенной системой против внешних сил.

    Уравнение (I.1)- математическая запись 1-го начала термодинамики, уравнение (I.2) – для бесконечно малого изменения сост. системы.

    Внутр. энергия- функция сост.; это означает, что измен-е внутр. энергии ΔU не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутр. энергии U2 и U1 в этих состояниях: (I.3)

    Внутр. энергия системы- это сумма потенциальной энергии взаимодейст. всех частиц тела м/у собой и кинетической энергии их движения (без учета кинетич. и потенциальн. энергий системы в целом). Внут. энергия системы зависит от природы в-ва, его массы и от параметров состоянии системы. Она возраст. с увеличением массы системы, так как является экстенсивным св-вом системы. Внутр. энергию обозначают литерой U и выражают в джоулях (Дж). В общем случае для системы с кол-вом в-ва 1 моль. Внутр. энергия, как и любое термодинамич. св-во системы, явл-ся функцией сост. Непосредственно в эксперименте проявляются только изменения внутр. энергии. Именно поэтому при расчетах всегда оперируют с её изменением U2 –U1 = U.

    Все изменения внутр. энергии делятся на две группы. В 1-ую группу входит только 1-а форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Понятие теплоты связано с поведением огромного числа частиц – атомов, молекул, ионов. Они находятся в постоянном хаотическом (тепловом) движении. Теплота – форма передачи энергии. Второй способ обмена энергией – работа. Этот обмен энергии обусловлен действием, совершаемым системой, или действием, совершаемым над ней. Обычно работу обозначают символом W . Работа, также как и теплота, не является функцией состояния системы, поэтому величину, соответствующую бесконечно малой работе, обозначают символом частной производной - W .