Простые задачи по теории вероятности. Основная формула

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

Вероятность наступления события в некотором испытании равна отношению , где:

Общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

Количество элементарных исходов, благоприятствующих событию .

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

Извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30-ти шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: - из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
- вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность. Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

Из урны будет извлечён красный шар;
- из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию - 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

На практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
- вероятность того, то из урны будет извлечён белый шар;
- вероятность того, то из урны будет извлечён красный шар;
- вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?


Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них - ноль, а другая - нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль - это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр - ноль, а другая цифра - нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:

01, 03, 05, 07, 09

10, 30, 50, 70, 90

И подсчитываем их - всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
- вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин - код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр - то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже - большее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;

б) не более четырёх очков;

в) от 3-х до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где - цифра, выпавшая на 1-м кубике, - цифра, выпавшая на 2-м кубике.

Например:

На первом кубике выпало 3 очка, на втором - 5 очков, сумма очков: 3 + 5 = 8;
- на первом кубике выпало 6 очков, на втором - 1 очко, сумма очков: 6 + 1 = 7;
- на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую - две «шестёрки».

а) Рассмотрим событие: - при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
- искомая вероятность.

б) Рассмотрим событие: - выпадет не более 4-х очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия - подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
- вероятность того, что выпадет не более 4-х очков.

в) Рассмотрим событие: - выпадет от 3-х до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : - выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
- вероятность того, что выпадет меньше трёх или больше 9-ти очков.

Особо щепетильные люди могут перечислить все 29 пар, выполнив тем самым проверку.

Ответ :

В следующей задаче повторим таблицу умножения:

Задача 6

Найти вероятность того, что при броске двух игральных костей произведение очков:

а) будет равно семи;

б) окажется не менее 20-ти;

в) будет чётным.

Краткое решение и ответ в конце урока.

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах;

б) двое выйдут на одном этаже;

в) все выйдут на одном этаже.

Решение : вычислим общее количество исходов: способами может выйти из лифта 1-й пассажир и способами - 2-й пассажир и способами - третий пассажир. По правилу умножения комбинаций: возможных исходов. То есть, каждый этаж выхода 1-го человека может комбинироваться с каждым этажом выхода 2-го человека и с каждым этажом выхода 3-го человека.

Второй способ основан на размещениях с повторениями :
- кому как понятнее.

а) Рассмотрим событие: - пассажиры выйдут на разных этажах. Вычислим количество благоприятствующих исходов:
способами могут выйти 3 пассажира на разных этажах. Рассуждения по формуле проведите самостоятельно.

По классическому определению:

в) Рассмотрим событие: - пассажиры выйдут на одном этаже. Данному событию благоприятствуют исходов и по классическому определению, соответствующая вероятность: .

Заходим с чёрного хода:

б) Рассмотрим событие: - два человека выйдут на одном этаже (и, соответственно, третий - на другом) .

События образуют полную группу (считаем, что в лифте никто не уснёт и лифт не застрянет , а значит, .

В результате, искомая вероятность:

Таким образом, теорема о сложении вероятностей событий, образующих полную группу , может быть не только удобной, но и стать самой настоящей палочкой-выручалочкой!

Ответ :

Когда получаются большие дроби, то хорошим тоном будет указать их приближенные десятичные значения. Обычно округляют до 2-3-4-х знаков после запятой.

Поскольку события пунктов «а», «бэ», «вэ» образуют полную группу, то есть смысл выполнить контрольную проверку, причём, лучше с приближенными значениями:

Что и требовалось проверить.

Иногда по причине погрешности округлений может получиться 0,9999 либо 1,0001, в этом случае одно из приближенных значений следуют «подогнать» так, чтобы в сумме нарисовалась «чистая» единица.

Самостоятельно:

Задача 8

Подбрасывается 10 монет. Найти вероятность того, что:

а) на всех монетах выпадет орёл;

б) на 9 монетах выпадет орёл, а на одной - решка;

в) орёл выпадет на половине монет.

Задача 9

На семиместную скамейку случайным образом рассаживается 7 человек. Какова вероятность того, что два определённых человека окажутся рядом?

Решение : с общим количеством исходов проблем не возникает:
способами могут рассесться 7 человек на скамейке.

Но вот как подсчитать количество благоприятствующих исходов? Тривиальные формулы не подходят и единственный путь - это логические рассуждения. Сначала рассмотрим ситуацию, когда Саша и Маша оказались рядом на левом краю скамейки:

Очевидно, что порядок имеет значение: слева может сидеть Саша, справа Маша и наоборот. Но это ещё не всё - для каждого из этих двух случаев остальные люди могут рассесться на свободных местах способами. Выражаясь комбинаторно, Сашу и Машу можно переставить на соседних местах способами и для каждой такой перестановки других людей можно переставить способами.

Таким образом, по правилу умножения комбинаций, выходит благоприятствующих исходов.

Но и это ещё не всё! Перечисленные факты справедливы для каждой пары соседних мест:

Интересно отметить, что если скамейку «скруглить» (соединяя левое и правое место) , то образуется дополнительная, седьмая пара соседних мест. Но не будем отвлекаться. Согласно тому же принципу умножения комбинаций, получаем окончательное количество благоприятствующих исходов:

По классическому определению:
- вероятность того, что два определённых человека окажутся рядом.

Ответ :

Задача 10

На шахматную доску из 64 клеток ставят наудачу две ладьи белого и чёрного цвета. С какой вероятностью они не будут «бить» друг друга?

Справка : шахматная доска имеет размер клеток; черная и белая ладьи «бьют» друг друга, когда располагаются на одной горизонтали или на одной вертикали

Обязательно выполните схематический чертёж доски, а ещё лучше, если неподалёку есть шахматы. Одно дело рассуждения на бумаге, и совсем другое - когда расставляешь фигуры собственными руками.

Задача 11

Какова вероятность того, что в четырех сданных картах будет один туз и один король?

Вычислим общее количество исходов. Сколькими способами можно извлечь 4 карты из колоды? Наверное, все поняли, что речь идёт о количестве сочетаний :
способами можно выбрать 4 карты из колоды.

Теперь считаем благоприятствующие исходы. По условию, в выборке из 4-х карт должен быть один туз, один король и, о чём не сказано открытым текстом, - две другие карты :

Способами можно извлечь одного туза;
способами можно выбрать одного короля.

Исключаем из рассмотрения тузов и королей: 36 - 4 - 4 = 28

способами можно извлечь две другие карты.

По правилу умножения комбинаций:
способами можно извлечь искомую комбинацию карт (1-го туза и 1-го короля и две другие карты).

Прокомментирую комбинационный смысл записи другим способом:
каждый туз комбинируется с каждым королем и с каждой возможной парой других карт.

По классическому определению:
- вероятность того, что среди четырех сданных карт будет один туз и один король.

Если хватает времени и терпения, максимально сокращайте большие дроби.

Ответ :

Более простая задача для самостоятельного решения:

Задача 12

В ящике находится 15 качественных и 5 бракованных деталей. Наудачу извлекаются 2 детали.

Найти вероятность того, что:

а) обе детали будут качественными;

б) одна деталь будет качественной, а одна - бракованной;

в) обе детали бракованны.

События перечисленных пунктов образуют полную группу, поэтому проверка здесь напрашивается сама собой. Краткое решение и ответ в конце урока. А вообще, всё самое интересное только начинается!

Задача 13

Студент знает ответы на 25 экзаменационных вопросов из 60-ти. Какова вероятность сдать экзамен, если для этого необходимо ответить не менее чем на 2 из 3-х вопросов?

Решение : итак, расклад таков: всего 60 вопросов, среди которых 25 «хороших» и, соответственно, 60 - 25 = 35 «плохих». Ситуация шаткая и не в пользу студента. Давайте узнаем, насколько хороши его шансы:

способами можно выбрать 3 вопроса из 60-ти (общее количество исходов) .

Для того чтобы сдать экзамен, нужно ответить на 2 или 3 вопроса. Считаем благоприятствующие комбинации:

Способами можно выбрать 2 «хороших» вопроса и один «плохой»;

способами можно выбрать 3 «хороших» вопроса.

По правилу сложения комбинаций :
способами можно выбрать благоприятствующую для сдачи экзамена комбинацию 3-х вопросов (без разницы с двумя или тремя «хорошими» вопросами) .

По классическому определению:

Ответ :

Задача 14

Игроку в покер сдаётся 5 карт. Найти вероятность того, что:

а) среди этих карт будет пара десяток и пара валетов;
б) игроку будет сдан флеш (5 карт одной масти);
в) игроку будет сдано каре (4 карты одного номинала).

Какую из перечисленных комбинаций вероятнее всего получить?

! Внимание! Если в условии задан подобный вопрос, то на него необходимо дать ответ.
Справка : в покер традиционно играют 52-х карточной колодой, которая содержит карты 4-х мастей номиналом от «двоек» до тузов.

Покер - игра самая что ни на есть математическая (кто играет, тот знает), в которой можно обладать заметным преимуществом перед менее квалифицированными соперниками.

Решения и ответы :

Задача 2: Решение : 30 - 5 = 25 холодильников не имеют дефекта.

- вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4-х мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):

7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558

Благоприятствующий исход один (правильный пин-код).

Таким образом, по классическому определению:
- вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2-х кубиках.

а) Рассмотрим событие: - при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов,
, т.е. это событие является невозможным.

б) Рассмотрим событие: - при броске двух игральных костей произведение очков окажется не менее 20-ти. Данному событию благоприятствуют следующие исходы:

Итого: 8

По классическому определению:

- искомая вероятность.

в) Рассмотрим противоположные события:

- произведение очков будет чётным;

- произведение очков будет нечётным.

Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.

По классическому определению вероятности:

Противоположные события образуют полную группу, поэтому:

- искомая вероятность.

Ответ :

Задача 8: Решение способами могут упасть 2 монеты.
Другой путь: способами может упасть 1-ая монета и способами может упасть 2-ая монета и и способами может упасть 10-ая монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: - на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: - на 9 монетах выпадет орёл, а на одной - решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: - орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Задача 10: Решение : вычислим общее количество исходов:
способами можно расставить двух ладей на доске.
Другой вариант оформления: способами можно выбрать две клетки шахматной доски и способами поставить белую и чёрную ладью в каждом из 2016 случаев. Таким образом, общее число исходов: .

Теперь подсчитаем исходы, в которых ладьи «бьют» друг друга. Рассмотрим 1-ую горизонталь. Очевидно, что фигуры можно расставить на ней произвольным образом, например, так:

Кроме того, ладей можно переставить. Придаём рассуждениям числовую форму: способами можно выбрать две клетки и способами переставить ладей в каждом из 28 случаев. Всего: возможных расположений фигур на горизонтали.
Короткая версия оформления: способами можно разместить белую и чёрную ладью на 1-й горизонтали.

Проведённые рассуждения справедливы для каждой горизонтали, поэтому количество комбинаций следует умножить на восемь: . Кроме того, аналогичная история справедлива для любой из восьми вертикалей. Вычислим итоговое количество расстановок, в которых фигуры «бьют» друг друга:

Тогда в оставшихся вариантах расстановки ладьи не будут «бить» друг друга:
4032 - 896 = 3136

По классическому определению вероятности:
- вероятность того, что наугад поставленные на доску белая и чёрная ладья не будут «бить» друг друга.

Ответ :

Задача 12: Решение : всего: 15 + 5 = 20 деталей в ящике. Вычислим общее число исходов:
способами можно извлечь 2 детали из ящика.
а) Рассмотрим событие: - обе извлечённые детали будут качественными.
способами можно извлечь 2 качественные детали.
По классическому определению вероятности:
б) Рассмотрим событие: - одна деталь будет качественной, а одна - бракованной.
способами можно извлечь 1 качественную деталь и 1 бракованную.
По классическому определению:
в) Рассмотрим событие: - обе извлечённые детали бракованны.
способами можно извлечь 2 бракованные детали.
По классическому определению:
Проверка : вычислим сумму вероятностей событий, образующих полную группу: , что и требовалось проверить.
Ответ :

А сейчас возьмём в руки уже знакомое и безотказное орудие учёбы - игральный кубик с полной группой событий , которые состоят в том, что при его броске выпадут 1, 2, 3, 4, 5 и 6 очков соответственно.

Рассмотрим событие - в результате броска игральной кости выпадет не менее пяти очков. Данное событие состоит в двух несовместных исходах: (выпадет 5 или 6 очков)
- вероятность того, что в результате броска игральной кости выпадет не менее пяти очков.

Рассмотрим событие , состоящее в том, что выпадет не более 4-х очков и найдем его вероятность. По теореме сложения вероятностей несовместных событий:

Возможно, некоторые читатели ещё не до конца осознали суть несовместности. Вдумаемся ещё раз: студент не может ответить на 2 вопроса из 3-х и в то же самое время ответить на все 3 вопроса. Таким образом, события и - несовместны.

Теперь, пользуясь классическим определением , найдём их вероятности:

Факт успешной сдачи экзамена выражается суммой (ответ на 2 вопроса из 3-х или на все вопросы) . По теореме сложения вероятностей несовместных событий:
- вероятность того, что студент сдаст экзамен.

Этот способ решения совершенно равноценен, выбирайте, какой больше нравится.

Задача 1

Магазин получил продукцию в ящиках с четырех оптовых складов: четыре с 1-го, пять со 2-го, семь с 3-го и четыре с 4-го. Случайным образом выбран ящик для продажи. Какова вероятность того, что это будет ящик с первого или третьего склада.

Решение : всего получено магазином: 4 + 5 + 7 + 4 = 20 ящиков.

В данной задаче удобнее воспользоваться «быстрым» способом оформления без расписывания событий большими латинскими буквами. По классическому определению:
- вероятность того, что для продажи будет выбран ящик с 1-го склада;
- вероятность того, что для продажи будет выбран ящик с 3-го склада.

По теореме сложения несовместных событий:
- вероятность того, что для продажи будет выбран ящик с первого или третьего склада.

Ответ : 0,55

Безусловно, задача разрешима и чисто через классическое определение вероятности путём непосредственного подсчёта кол-ва благоприятствующих исходов (4 + 7 = 11), но рассмотренный способ ничем не хуже. И даже чётче.

Задача 2

В коробке 10 красных и 6 синих пуговиц. Наудачу извлекаются две пуговицы. Какова вероятность того, что они будут одноцветными?

Аналогично - здесь можно использовать комбинаторное правило суммы , но мало ли … вдруг кто-то его запамятовал. Тогда на помощь придёт теорема сложения вероятностей несовместных событий!

Итак, поговорим на тему, которая интересует очень многих. В данной статье я вам отвечу на вопрос о том, как рассчитать вероятность события. Приведу формулы для такого расчета и несколько примеров, чтобы было понятнее, как это делается.

Что такое вероятность

Начнем с того, что вероятность того, что то или иное событие произойдет – некая доля уверенности в конечном наступлении какого-то результата. Для этого расчета разработана формула полной вероятности, позволяющая определить, наступит интересующее вас событие или нет, через, так называемые, условные вероятности. Эта формула выглядит так: Р = n/m, буквы могут меняться, но на саму суть это никак не влияет.

Примеры вероятности

На простейшем примере разберем эту формулу и применим ее. Допустим, у вас есть некое событие (Р), пусть это будет бросок игральной кости, то есть равносторонний кубик. И нам требуется подсчитать, какова вероятность выпадения на нем 2 очков. Для этого нужно число положительных событий (n), в нашем случае – выпадение 2 очков, на общее число событий (m). Выпадение 2 очков может быть только в одном случае, если на кубике будет по 2 очка, так как по другому, сумма будет больше, из этого следует, что n = 1. Далее подсчитываем число выпадения любых других цифр на кости, на 1 кости – это 1, 2, 3, 4, 5 и 6, следовательно, благоприятных случаев 6, то есть m = 6. Теперь по формуле делаем нехитрое вычисление Р = 1/6 и получаем, что выпадение на кости 2 очков равно 1/6, то есть вероятность события очень мала.

Еще рассмотрим пример на цветных шарах, которые лежат в коробке: 50 белых, 40 черных и 30 зеленых. Нужно определить какова вероятность вытащить шар зеленого цвета. И так, так как шаров этого цвета 30, то есть, положительных событий может быть только 30 (n = 30), число всех событий 120, m = 120 (по общему количеству всех шаров), по формуле рассчитываем, что вытащить зеленый шар вероятность равна будет Р = 30/120 = 0,25, то есть 25 % из 100. Таким же образом, можно вычислить и вероятность вытащить шар другого цвета (черного она будет 33%, белого 42%).

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Профессиональный беттер должен хорошо ориентироваться в коэффициентах, быстро и правильно оценивать вероятность события по коэффициенту и при необходимости уметь перевести коэффициенты из одного формата в другой . В данном мануале мы расскажем о том, какие бывают виды коэффициентов, а так же на примерах разберём, как можно высчитывать вероятность по известному коэффициенту и наоборот.

Какие бывают типы коэффициентов?

Существует три основных вида коэффициентов, которые предлагают игрокам букмекеры: десятичные коэффициенты , дробные коэффициенты (английские) и американские коэффициенты . Наиболее распространённые коэффициенты в Европе - десятичные. В Северной Америке популярны американские коэффициенты. Дробные коэффициенты - наиболее традиционный вид, они сразу же отражают информацию о том сколько нужно поставить, чтобы получить определённую сумму.

Десятичные коэффициенты

Десятичные или еще их называют европейские коэффициенты - это привычный формат числа, представленный десятичной дробью с точностью до сотых, а иногда даже до тысячных. Пример десятичного коэффициента - 1.91. Рассчитать прибыль в случае с десятичными коэффициентами очень просто, достаточно лишь умножить сумму вашей ставки на этот коэффициент. Например, в матче "Манчестер Юнайтед" - "Арсенал" победа "МЮ" выставлена с коэффициентом - 2.05, ничья оценена коэффициентом - 3.9, а победа "Арсенала" равняется - 2.95. Предположим, что мы уверены в победе "Юнайтед" и ставим на них 1000 долларов. Тогда наш возможный доход рассчитывается следующим образом:

2.05 * $1000 = $2050;

Правда ведь ничего сложного?! Точно так же рассчитывается возможный доход при ставке на ничью и победу "Арсенала".

Ничья: 3.9 * $1000 = $3900;
Победа "Арсенала": 2.95 * $1000 = $2950;

Как рассчитать вероятность события по десятичным коэффициентам?

Представим теперь что нам нужно определить вероятность события по десятичным коэффициентам, которые выставил букмекер. Делается это так же очень просто. Для этого мы единицу делим на этот коэффициент.

Возьмем уже имеющиеся данные и посчитаем вероятность каждого события:

Победа "Манчестер Юнайтед": 1 / 2.05 = 0,487 = 48,7%;
Ничья: 1 / 3.9 = 0,256 = 25,6%;
Победа "Арсенала": 1 / 2.95 = 0,338 = 33,8%;

Дробные коэффициенты (Английские)

Как понятно из названия дробный коэффициент представлен обыкновенной дробью. Пример английского коэффициента - 5/2. В числителе дроби находиться число, являющееся потенциальной суммой чистого выигрыша, а в знаменателе расположено число обозначающее сумму которую нужно поставить, чтобы этот выигрыш получить. Проще говоря, мы должны поставить $2 доллара, чтобы выиграть $5. Коэффициент 3/2 означает что для того чтобы получить $3 чистого выигрыша нам придётся сделать ставку в размере $2.

Как рассчитать вероятность события по дробным коэффициентам?

Вероятность события по дробным коэффициентам рассчитать так же не сложно, нужно всего на всего разделить знаменатель на сумму числителя и знаменателя.

Для дроби 5/2 рассчитаем вероятность: 2 / (5+2) = 2 / 7 = 0,28 = 28%;
Для дроби 3/2 рассчитаем вероятность:

Американские коэффициенты

Американские коэффициенты в Европе непопулярны, зато в Северной Америке очень даже. Пожалуй, данный вид коэффициентов самый сложный, но это только на первый взгляд. На самом деле и в этом типе коэффициентов ничего сложного нет. Сейчас во всем разберёмся по порядку.

Главной особенностью американских коэффициентов является то, что они могут быть как положительными , так и отрицательными . Пример американских коэффициентов - (+150), (-120). Американский коэффициент (+150) означает, что для того чтобы заработать $150 нам нужно поставить $100. Иными словами положительный американский коэффициент отражает потенциальный чистый заработок при ставке в $100. Отрицательный же американский коэффициент отражает сумму ставки, которую необходимо сделать для того чтобы получить чистый выигрыш в $100. Например коэффициент (- 120) нам говорит о том, что поставив $120 мы выиграем $100.

Как рассчитать вероятность события по американским коэффициентам?

Вероятность события по американскому коэффициенту считается по следующим формулам:

(-(M)) / ((-(M)) + 100) , где M - отрицательный американский коэффициент;
100 / (P + 100) , где P - положительный американский коэффициент;

Например, мы имеем коэффициент (-120), тогда вероятность рассчитывается так:

(-(M)) / ((-(M)) + 100); подставляем вместо "M" значение (-120);
(-(-120)) / ((-(-120)) + 100 = 120 / (120 + 100) = 120 / 220 = 0,545 = 54,5%;

Таким образом, вероятность события с американским коэффициентом (-120) равна 54,5%.

Например, мы имеем коэффициент (+150), тогда вероятность рассчитывается так:

100 / (P + 100); подставляем вместо "P" значение (+150);
100 / (150 + 100) = 100 / 250 = 0,4 = 40%;

Таким образом, вероятность события с американским коэффициентом (+150) равна 40%.

Как зная процент вероятности перевести его в десятичный коэффициент?

Для того чтобы рассчитать десятичный коэффициент по известному проценту вероятности нужно 100 разделить на вероятность события в процентах. Например, вероятность события составляет 55%, тогда десятичный коэффициент этой вероятности будет равен 1,81.

100 / 55% = 1,81

Как зная процент вероятности перевести его в дробный коэффициент?

Для того чтобы рассчитать дробный коэффициент по известному проценту вероятности нужно от деления 100 на вероятность события в процентах отнять единицу. Например, имеем процент вероятности 40%, тогда дробный коэффициент этой вероятности будет равен 3/2.

(100 / 40%) - 1 = 2,5 - 1 = 1,5;
Дробный коэффициент равен 1,5/1 или 3/2.

Как зная процент вероятности перевести его в американский коэффициент?

Если вероятность события больше 50%, то расчёт производится по формуле:

- ((V) / (100 - V)) * 100, где V - вероятность;

Например, имеем вероятность события 80%, тогда американский коэффициент этой вероятности будет равен (-400).

- (80 / (100 - 80)) * 100 = - (80 / 20) * 100 = - 4 * 100 = (-400);

В случае если вероятность события меньше 50%, то расчёт производиться по формуле:

((100 - V) / V) * 100 , где V - вероятность;

Например, имеем процент вероятности события 20%, тогда американский коэффициент этой вероятности будет равен (+400).

((100 - 20) / 20) * 100 = (80 / 20) * 100 = 4 * 100 = 400;

Как перевести коэффициент в другой формат?

Бывают случаи, когда необходимо перевести коэффициенты из одного формата в другой. Например, у нас есть дробный коэффициент 3/2 и нам нужно перевести его в десятичный. Для перевода дробного коэффициента в десятичный мы сначала определяем вероятность события с дробным коэффициентом, а затем эту вероятность переводим в десятичный коэффициент.

Вероятность события с дробным коэффициентом 3/2 равна 40%.

2 / (3+2) = 2 / 5 = 0,4 = 40%;

Теперь переведём вероятность события в десятичный коэффициент, для этого 100 делим на вероятность события в процентах:

100 / 40% = 2.5;

Таким образом, дробный коэффициент 3/2 равен десятичному коэффициенту 2.5. Аналогичным образом переводятся, например, американские коэффициенты в дробные, десятичные в американские и т.д. Самое сложное во всём этом лишь расчёты.