Равновесие по нэшу следует соблюдать на. Равновесие нэша

Проявляет себя в реальности, дабы показать, что это понятие является не просто абстрактным термином, а обобщением реально существующей закономерности. Однако, несмотря на наглядность примера, на основании только его одного может показаться, что мы наткнулись на какой-то вырожденный случай. Поэтому имеет смысл рассмотреть и более общее описание данного правила.

Многие читатели, возможно, знакомы с равновесием Нэша по одному весьма распространённому его частному случаю - так называемой «дилемме заключённого». Его суть примерно в следующем.

В тюрьме находятся два заключённых, которых взяли с поличным по отдельности, но ещё подозревают в более тяжких преступлениях. Если участие докажут, то срок заключённых возрастёт до десяти лет. Сейчас же они отсиживают по году каждый. Следствие предлагает каждому из них пойти на сделку и дать показания против второго. В этом случае первому срок скостят до полугода, а второй сядет на десять. Однако заключённые понимают, что если они оговорят друг друга, то вряд ли их обоих пощадят - скорее добавят каждому ещё лет по пять.

Расклад можно отобразить при помощи следующей таблицы.

Легко видеть, что «зелёные» варианты (1, 2) и (2, 1) являются симметричными, в двух же других положение заключённых будет идентичным. Поэтому можно рассмотреть логику ситуации с точки зрения только одного из заключённых - для второго она будет такой же.

Заключённый, разумеется, хочет наименьшего срока для себя. Но если он будет хранить молчание, то, возможно, его коллега даст против него показания, чем повысит ему срок до десяти лет. Если бы не обещанное снижение срока, то можно было бы тешить себя мыслью «а зачем мне это?», но соблазн снизить срок слишком вели́к. Кроме того, второй заключённый, как понимает первый, будет подозревать его, первого, в том, что он даст показания против второго и повысит тем самым ему срок.

«Обидно будет оказаться крайним и загреметь на десять лет», - думает первый. Но «и второй наверняка думает так же, и так же подозревает меня, - понимает он, - а потому шансов, что коллега меня не заложит, очень мало. Выходит, надо давать показания: если второй каким-то чудом промолчит, то будет полгода, проговорится - пять. Ну хоть не десять, которые я неизбежно получу из-за разоткровенничавшегося со следствием моего подельника!».

«Оранжевый» вариант (1, 1) является удобоваримым для обоих и в каком-то смысле это оптимум в данной ситуации. Однако у каждого есть ещё лучший вариант - соответствующий «зелёный» (1, 2) или (2, 1). В результате чего на деле будет реализован «красный» вариант (2, 2).

Можно сказать, что для каждого из заключённых он не так плох: всего пять лет против десяти в «зелёном» варианте в пользу подельника. Однако представим, что в «красном» варианте обоим дадут по десять. Логика в данном случае чуть-чуть поменяется: «если я его сдам, то хотя бы есть шанс отвертеться от десяти лет, а если промолчу - шансов нет, он меня наверняка заложит по тем же соображениям». Однако тут система подталкивает заключённых выбрать наихудший вариант из возможных. Действуя, что характерно, строго ради своей выгоды.

Рассмотрим теперь ещё одну ситуацию. Есть две фирмы - А и Б. Каждая из них может воспользоваться стратегией - Икс или Игрек. Однако на результаты оказывает влияние не только стратегия, выбранная самой фирмой, но и стратегия второй фирмы тоже. Выигрыш или проигрыш каждой из фирм мы представим в виде следующей таблицы.

Я специально для повышения накала страстей подобрал числа так, чтобы убыточное для обеих фирм состояние лишь незначительно отличалось бы от «соседних» с ним: тем удивительнее, что будет реализовано именно оно. Фирмы, действуя строго в своих интересах, с большой вероятностью захотят получить тысячу рублей вместо ста и тем самым не получат ничего, а наоборот, даже утратят. Переход же одной из фирм на стратегию Икс ещё сильнее ухудшит её положение - другая фирма будет обогащаться, а вторая терять ещё больше, хотя и незначительно больше.

Запишем вышеприведённые матрицы в более общем виде, абстрагировавшись от «фирм», «заключённых», «сроков» и «рублей». Положим, что у нас просто есть два игрока А и Б, играющие в некоторую игру, где на каждом ходе можно совершить один из двух ходов - Икс или Игрек. Выигрышем являются просто некие «баллы», наибольшее число которых каждый игрок и стремится набрать.

А делает ход Икс А делает ход Игрек
Б делает ход Икс А: a 0
Б: b 0
А: a 1 > a 0
Б: b 1 < b 3
Б делает ход Игрек А: a 2 < a 3
Б: b 2 > b 0
А: b 3
Б: a 3

Правила игры, представленные данной матрицей, будут «подталкивать» игроков к реализации «красного» варианта (2, 2), даже если выигрыши игроков в этом случае существенно меньше, чем во всех остальных вариантах. Правда, в зависимости от соотношения выигрышей (которые могут быть в том числе отрицательными - то есть проигрышами), обозначенных буквами «a» и «b» с индексами, частота реализации каждого из вариантов будет разной.

В частности, на выбор может влиять среднее арифметическое выигрышей при выборе каждой из стратегий, а также предположительная вероятность, с которой игрок сделает тот или иной ход (которая, кстати, может быть аппроксимирована частотой ходов, сделанных в предыдущих раундах). Так, в простейшем случае игрок А для оценки хода Икс складывает a 0 и a 2 и делит результат на два, полагая выбор хода со стороны Б равновероятным. То же самое он проделывает для хода Игрек - складывает a 1 с a 3 , после чего делит результат на два - и сравнивает результаты. В более сложном случае игрок считает сумму a 0 *p x + a 2 *p y , где p x и p y - вероятности ходов Икс и Игрек, сделанных игроком Б. Результат сравнивается с a 1 *p x + a 3 *p y .

Можно было бы, конечно, снова поделить результат на два, но поскольку деление на два имеет место быть для обоих вариантов хода, для сравнения величин эта операция необязательна, как, впрочем, и в случае «равновероятных ходов».

Также игрок может ориентироваться на сами величины. Например, если один из ходов означает вероятный проигрыш - особенно крупный, такой, какой игрок не может себе позволить, - игрок, не исключено, будет выбирать другой ход, даже если предположительный выигрыш при другом ходе в среднем ниже, но зато в обоих случаях положительный.

Наконец, надо помнить, что люди часто, скажем так, «помнят о другом игроке». Если второй игрок - конкурент или даже враг, то, возможно, будет иметь место тенденция выбирать такой ход, который навредит другому игроку, даже если первый игрок из-за этого выиграет мало, и даже, не исключено, проиграет. Если второй игрок - друг, то чаще будет выбираться ход, позволяющий чуть-чуть выиграть и ему тоже - в том случае, если «игра» - это не заранее заявленное соревнование, а какой-то процесс из реальной жизни. Возможности мести и поблажек, разумеется, зависят от соотношений в матрице - при некоторых из них скорее забудут, что соперник - твой друг, чем начнут ему слегка подыгрывать.

Иными словами, рассматриваемый нами принцип отображает именно что тенденцию, а не детерминированность. Чем сильнее соотношения значений выигрышей и проигрышей подобны фигурировавшим в «дилемме заключённого», тем чаще и быстрее система будет подводить игроков к «наихудшему» варианту и тем «более наихудшим» будет этот вариант.

Есть как бы «невидимая рука рынка», которая как бы невидимо подталкивает игроков… ну, вы знаете. Точнее, нет, может быть, и не знаете. В классическом варианте «рука рынка» как бы подталкивает куда всем надо, а тут она толкает совсем не туда. Не во всеобщее благо, а в перманентный кризис, которого при иных раскладах можно было бы избежать, что нам иллюстрирует и «дилемма заключённого», и гипотетический пример с конкуренцией фирм, и реальный пример с неизбежным завышением сроков разработки софта, о котором речь шла в предыдущей статье.

Рынок толкает игроков к равновесию Нэша, которое сколь угодно далеко может отстоять от их общего и личного блага.

В данном случае мы рассматривали только двух игроков и игру с двумя ходами, однако возможно и более широкое обобщение, которое как раз и является формулировкой равновесия Нэша:

Если в некоторой игре с произвольными количеством игроков и матрицей выигрышей существует такое состояние, что при выборе не соответствующего ему хода любым из игроков в отдельности его личный выигрыш уменьшится, то это состояние окажется «равновесным» для данной игры.

Кроме того, в ряде случаев ходы игроков будут иметь тенденцию стремиться к этому состоянию, даже если в этой игре есть другие состояния, в рамках которых выигрыш игроков в целом и/или по отдельности выше.

Приводить примеры такого общего случая способом, подобным ранее использованному, ощутимо тяжелее, поскольку добавление каждого игрока будет добавлять ещё одно измерение к матрице выигрышей. Однако об этом - позже.

Определение 2.10. Пусть задана игра G в нормальной форме (N,Sj , Исход s = (s, s 2 > > %)е5 называется равновесием

Нэша (NE - Nash Equilibrium) игры G, если Vi е 1.....N, Уу, е 5,

Иначе говоря, каждый из игроков максимизирует свою функцию полезности

на множестве своих стратегий.

В точке равновесия Нэша стратегия х,- - одна из лучших для игрока i стратегий в ответ на х_ ; =(х 1 ,х 2 ,--.,^_ 1 ,х 1+1 ,...,х лг) - стратегии остальных игроков. Игрок i рассматривает стратегии из х_ ; как заданную вполне определенную совокупность стратегий «внешнего мира», на которую он не может активно воздействовать. Он может активно выбирать лишь свою стратегию в, которая будет наилучшим выбором, если остальные игроки выберут s_j. При этом игрок i полагает, что аналогично выбирают свои стратегии и все остальные игроки.

В точке равновесия Нэша игроку i невыгодно в одиночку отклоняться от стратегии s it если остальные игроки придерживаются стратегий 5 1 ,s 2 ,...s,-_ 1 ,s i+1 ...s N . Действия «в одиночку» могут только уменьшить выигрыш игрока i. Поиск точки равновесия Нэша, таким образом, сводится к решению системы из N задач максимизации функций полезности по соответствующим переменным

Пусть G - (N, 5,-, Uj , i - 1,..N) - конечная игра в нормальной форме.

Назовем X,- множеством смешанных стратегий игрока i, а множество X = X,-Х 2 -...-X jV - множеством профилей всех смешанных стратегий. Обозначим аеХ - элементы этого множества.

Назовем игру G = (N; X; и) смешанным расширением игры G. Тогда равновесие в смешанных стратегиях в игре G - это равновесие Нэша в ее смешанном расширении.

Пример 2.17. Задана биматричная игра

Какие выигрыши будут у игроков при выборе ими стратегий т = 0 + 0,и п = 0,25с + 0,75d ?

Решение

Запишем рядом с чистыми стратегиями вероятности их выбора:

Поскольку выбор стратегий осуществляется игроками независимо, вероятность профиля (а; с) равна 0,4-0,25 = 0,1. Аналогично рассчитываются вероятности выигрышей игроков при остальных наборах чистых стратегий. Для удобства выигрыши игроков представим в виде вектор-столбца:

Ответ: щ - 2; и 2 = 0,25.

Наряду с равновесием Нэша введем еще одно важное понятие - доминирования по Парето.

Пусть задана игра в нормальной форме G = (N,Si, u it i = l,...,N). Рассмотрим два профиля стратегий x = (x,x 2 ,...,x jY)e5 и i/ = (i/ v i/ 2 ,...,yy)&S.

Определение 2.11. Профиль стратегий х доминирует по Парето профиль стратегий у, если

Последняя система неравенств означает, что для всех игроков профиль х не хуже, чем профиль у, но при этом хотя бы для одного из игроков профиль х лучше, чем у.

Определение 2.12. Профиль стратегий х называется оптимальным по Парето (Парето-оптимальным), если он недоминируем но Парето.

Если исход оптимален но Парето, то он характеризуется следующим свойством: невозможно улучшить положение ни одного из игроков без ухудшения положения хотя бы одного из других игроков.

Пример 2.18. Найти точки равновесия Нэша, точки равновесия в строго доминирующих стратегиях и Парето-оптимальные точки в матричной игре двух игроков с заданными платежными матрицами:

Решение

Очевидно, ни одна из стратегий не является строго доминируемой. Поэтому равновесия в строго доминирующих стратегиях нет.

Для определения равновесий Нэша подчеркнем наибольшие выигрыши каждого из игроков при фиксированных ходах противника:

Исходы с двойными подчеркиваниями будут равновесиями Нэша: (a; d) (b; с); (b;d ).

Для определения Парето-оптимальных исходов удобно изобразить все точки биматричной игры в критериальной плоскости (рис. 2.21 - по осям откладываем выигрыши игроков).


Рис. 2.21

Парето-оптимальными являются точки, в направлении штриховки от которых (к «северо-востоку») нет других точек. Таковыми являются исходы (а ; d) (а; с); (Ь; с). Введем для краткости обозначения для Парето- оптимальных точек - Р и для равновесных по Нэшу - N. Получим

Выясним, существуют ли в этой игре равновесные по Нэшу профили смешанных стратегий.

Пусть стратегии а и b играются с вероятностями р и 1 - р соответственно, а стратегии с и d - с вероятностями q и 1 - q.

Максимизируем функцию щ(р, q) = 3q - 2pq по переменной р е при постоянном значении q

К аналогичному результату приводит рассмотрение рационального поведения второго игрока, оптимизирующего u 2 (p,q ) по переменной q при постоянном значении р

Изобразим полученный результат (рис. 2.22) в координатах (q, р ):

Рис. 2.22

Как видим, оба графика совпали.

Равновесия Нэша:

Пример 2.19. Найти точки равновесия Нэша (в смешанных стратегиях) и Парето-оптимальные точки в матричной игре двух игроков с заданными платежными матрицами:

Решение

Очевидно, доминирующих стратегий в игре нет. Точек равновесия Нэша в чистых стратегиях также нет. Парето-оптимальные профили: (а ; d) и {b d).

Рассмотрим смешанные стратегии игроков.

Пусть стратегии а и b играются с вероятностями р и 1 - р соответственно, а стратегии cud - с вероятностями q и 1 - q. Запишем матрицу ожидаемых выигрышей первого и второго игроков:

Очевидно, первый игрок решает задачу

Решением задачи является

Эти три случая представлены на рис. 2.23.

Рис. 2.23

Аналогично второй игрок решает задачу Решением задачи является

Эти три случая представлены на рис. 2.24.

Рис. 2.24

Совмещая рисунки, получим рис. 2.25.

Рис. 2.25

Точка N (р = 0,75; q = 0,6), очевидно, является точкой равновесия Нэша в смешанных стратегиях, поскольку она получена в результате решения задач максимизации функции u x (p,q ) пори u 2 (p,q) по q.

Ответ: равновесие Нэша:

Как соотносятся между собой решения игр в чистых стратегиях, полученные методом итерационного исключения строго доминируемых стратегий (если они существуют) и равновесий Нэша? Ответ на этот вопрос дают следующие две теоремы.

Теорема 2.3. Если существует процедура итерационного исключения строго доминируемых стратегий в игре G - (S ;, щ;i - 1,...,N), которая приводит к единственному исходу s = (s i ,s 2 ,...,s N), то этот исход является единственным равновесием Нэша.

Доказательство теоремы достаточно очевидно, поскольку процедура итерационного исключения строго доминируемых стратегий в конечной игре не может исключить равновесия Нэша. И в силу единственности получаемого исхода он будет единственным равновесием Нэша.

Замечание. Если в теореме 2.3 исключить слово «строго», то она перестает быть справедливой. Например, в игре

исходы (а; с) и (Ь; с) являются точками равновесия Нэша, хотя стратегия b доминируема.

Теорема 2.4. Если исход явля

ется равновесием Нэша, то он не может быть исключен в процедуре итерационного исключения строго доминируемых стратегий.

Доказательство теоремы следует из определения строгой доминируемости стратегии.

Пример 2.20. Рассмотрим матричную игру:

Точка равновесия Нэша - (а,х). Однако стратегия а первого игрока доминируема (не строго) стратегией с, а стратегия х второго игрока доминируема стратегией у. Тем самым мы показали, что условие строгой доминируемое™ в теореме существенно.

Пример 2.21. Рассмотрим игру двух игроков, называемую «битва полов» (или «семейный спор»). Саша и Маша пытаются решить, как им проводить выходной день, - пойти на футбол или на балет. Конечно, Саше больше хочется пойти на футбол, Маша же получает большее удовольствие от балета. Но совсем никакого удовольствия они не получат, если будут развлекаться порознь (бывает же такое!). Саша и Маша выбирают место развлечения одновременно и независимо друг от друга, не сговариваясь. Матрица выигрышей имеет следующий вид :

В данной игре исход (Футбол; футбол) является точкой равновесия Нэша. Это значит, что если игроки договорились о выборе каждым из них первой стратегии, то ни одному из них невыгодно будет отклоняться от нее, если другой ее придерживается. Аналогично и исход (Балет; балет) будет точкой равновесия Нэша. Рассмотрим теперь возможность выбора игроками смешанных стратегий. Пусть первый игрок (Саша) выбирает первую и вторую чистые стратегии с вероятностями соответственно р и 1 - р. Второй игрок (Маша) выбирает первую и вторую чистые стратегии с вероятностями соответственно q и 1 -q. Получаем матрицу

Выигрыш Саши равен

Стратегия Саши определяется выбором вероятности р. Функция выигрыша Саши и с (р, q) р ,

если , и, следовательно, приСаша выберет максимальное значение вероятности, т.е.р = 1.

Аналогично если, то функция u c (p,q) - убывающая по переменной/;, и, следовательно, при Саша, максимизируя свой выигрыш, выберет минимальное значение вероятности, т.е. р = 0.

При функция и с (р> q) не зависит от р и Сашу удовлетворяет любое значение р е . Таким образом, имеем

Все сказанное наглядно представляется диаграммой (рис. 2.26).

Рис. 2.26

Выигрыш Маши равен

Стратегия Маши определяется выбором вероятности q. Функция выигрыша Маши u M (p,q) является монотонно возрастающей по переменной q,

если , и, следовательно, приМаша выберет максимальное значение вероятности, т.е.q = 1.

Аналогично если , то функция u M (p,q) - убывающая по переменной q, и, следовательно, приМаша выберет минимальное значение

вероятности, т.е.

При функция и и (р, q) не зависит от q и Машу удовлетворяет

любое значение

Все сказанное наглядно представляется диаграммой (рис. 2.27). Совмещение диаграмм на рис. 2.26 и 2.27 дает три точки пересечения наилучших выборов игроков на всевозможные действия другого игрока (рис. 2.28).

Имеем три точки равновесия Нэша. Первые

две из них соответствуют выбору чистых стратегий (Балет; балет) и (Футбол; футбол). Третья точка представляет собой точку равновесия Нэша в смешанных стратегиях.

Заметим, что значения платежных функций обоих игроков в точке В соседней точке, например , значения платежных функций игроков равны Однако

эта точка не будет точкой равновесия, поскольку если Маша будет придерживаться стратегии , то Саше будет более выгодна стратегия р = 1,

поскольку

Рис. 2.27

Пример 2.22. Рассмотрим пример биматричной игры, в которой существует бесконечно много равновесий 11эша:

Выигрыш первого игрока равен

р получим

Графически этот выбор изображается следующим образом (рис. 2.29).

Рис. 2.29

q вторым игроком. Но первый игрок не знает, каков выбор второго игрока. Он лишь знает, что второй игрок будет также максимизировать свою функцию выигрыша по переменной q.

Выигрыш второго игрока равен

Из условия максимизации функции выигрыша по переменной q получим

Графически этот выбор изображается следующим образом (рис. 2.30).

Рис. 230

Совместим графики на рис. 2.29 и 2.30 (рис. 2.31).

Рис. 2.31

Графики совпадают на отрезке АВ и в начале координат. Все эти точки и будут равновесиями Нэша в смешанных стратегиях. Точка p = q = 0 означает выбор профиля чистых стратегий (b;d ). Поэтому получим: NE:{(b;d), (pa + (l-p)b ; с), ре }.

Следующая теорема дает ответ на вопрос о существовании равновесия Нэша в довольно широком классе игр.

Теорема 2.5 (Нэш, 1950). Для любой конечной игры (т.е. множество игроков и множества их чистых стратегий конечны) в нормальной форме G = (N,S jt Uj,i = 1,..., N) всегда существует по крайней мере одна точка равновесия Нэша, возможно, в смешанных стратегиях.

Чистые стратегии могут быть строго доминируемы смешанными стратегиями, даже если в чистых стратегиях не существует доминируемых стратегий. Покажем это на следующем примере.

Пример 2.23. Дана биматричная игра:

Найти все равновесия Нэша в смешанных стратегиях.

Решение

В данной биматричной игре невозможно, рассматривая только чистые стратегии игроков, исключить строго доминируемые стратегии. Попробуем найти смешанную стратегию, которая доминирует чистую стратегию.

Сначала рассмотрим возможность исключения строго доминируемых строк. Выпишем для удобства матрицу выигрышей первого игрока (он выбирает строки):

Очевидно, никакая смешанная стратегия ра + (1- р)Ь не сможет доминировать чистую стратегию с, поскольку неравенство /?-0 + (1-/?)-2>14 невыполнимо ни при каких значениях р е . Значит, стратегия с не может быть строго доминируема даже с применением смешанных стратегий.

Как было доказано выше, величина f(p) = p-A + (l-p) B при /?е, {А и В - действительные числа) может принимать все значения между числами А и В. Действительно, поскольку /(/?) - линейная функция, то множеством ее значений является отрезок E(f) = .

Аналогично стратегия а не может быть доминируема смешанной стратегией pb + (l-р)с, поскольку (при выборе вторым игроком стратегии е) потребуется выполнение неравенства 4/?+ 4(1-/?) >6.

Предполагая, что смешанная стратегия pa + (1 - р)с может строго доминировать чистую стратегию Ь, также получим невыполнимое неравенство 2/?+ 4(1-/?) >8.

Следовательно, в данной игре не существует строго доминируемых стратегий первого игрока.

Рассмотрим стратегии второго игрока. Выпишем матрицу его выигрышей:

Очевидно, стратегии ей/ недоминируемы. Поскольку 2 е , 1 е , то можем предположить, что существует смешанная стратегия qe + (l-q)f, строго доминирующая чистую стратегию d. Проверим наше предположение. Для этого требуется выполнение системы неравенств:

Необязательно было решать систему неравенств. Достаточно догадаться, что эта система имеет какое-нибудь решение. Например, в данной задаче

видно, что смешанная стратегия строго доминирует стратегию d.

Важно понимать, что не только второй игрок исключает стратегию d, но и первый игрок, поставив себя на место второго и выполнив за него все указанные операции, может прийти к вывод}" об исключении стратегии d.

Вычеркнув первый столбец, получим матрицу

Нетрудно увидеть, что в этой матрице смешанная стратегия первого

игрока строго доминирует стратегию с (это стало очевидным только

после исключения стратегии d). Игра сократилась до биматричной игры размерности 2x2:

Теперь е>/. Получим

И наконец, а >- Ь.

Равновесие Нэша: (а; е). Этот исход будет единственным равновесием Нэша в исходной игре, поскольку процедура исключения строго доминируемых стратегий не может исключить равновесный по Нэшу профиль стратегий.

Пример 2.24. Последовательным исключением строго доминируемых чистых стратегий привести биматричную игру к игре размерности 2x2 (смешанная стратегия может доминировать чистую). Найти все равновесия Нэша в смешанных стратегиях.

5) Пусть первый игрок играет смешанную стратегию рА + ( 1 - р)С, а второй - qE + (-q)F.

Выигрыш первого игрока равен

Из условия максимизации функции выигрыша по переменной р получим

Графически этот выбор изображается следующим образом (рис. 2.32).

Рис. 2.32

Это наилучшее для первого игрока действие, зависящее от выбора вероятности q вторым игроком.

Выигрыш второго игрока равен

Из условия максимизации функции выигрыша по переменной q получим Графически этот выбор изображается следующим образом (рис. 2.33).

Рис. 2.33

Совместим графики на рис. 2.32 и 2.33 (рис. 2.34).

Рис. 2.34

Графики совпадают в трех точках. Эти точки и будут определять равновесия Нэша:

Пример 2.25. Найти все равновесия Нэша в смешанных стратегиях в биматричной игре

Решение

Способ 1. Нетрудно видеть, что в данной игре не существует строго доминируемых стратегий. Введем смешанные стратегии игроков:

Выигрыш первого игрока максимизируем по переменной р:

Выигрыш второго игрока максимизируем по переменным q и г.

Рассмотрим различные значения р (рис. 2.35).

Рис. 235

Случай 1. Пусть р 0,5. Тогда из (2) и (3) получим р - 0. Итак, (р = ();q = 0;г = 1) - равновесие Нэша. Это исход (b, d).

Случай 2. Пусть р = 0,5. Тогда из (2) получим q = 0, а из (1) 5г= 3, или г = 0,6. Следовательно, (р = 0,5; q = 0; г = 0,6) - равновесие Нэша. Это исход (0,5а + 0,56, 0,6d + 0,4е).

Случай 3. Пусть р е (0,5; 1). Тогда из (2) и (3) получим q = 0; г= 0. Но тогда из (1) имеем р = 1, что противоречит исходному условию.

Случай 4. Пусть р = 1. Тогда из (3) получим г = 0, а из (1) q 3, что выполняется при всех допустимых q. Итак, (р = 1; е;г = 0) - равновесия Нэша. Это исходы (a, qc + (-q)e), qe[ 0; 1].

Ответ: (6, d) (0,5а + 0,56, 0,6с/ + 0,4с); (a,qc + (-q)e), ^е.

Покажем еще один способ нахождения равновесий Нэша в таких играх.

Способ 2 (решения примера 2.25). Рассмотрим выигрыши второго игрока при условии выбора первым игроком смешанной стратегии ра + (-р)Ь. Выигрыш второго игрока при выборе им чистой стратегии с равен U - 3 р при выборе чистой стратегии d - = р + 3(- р)] при выборе чистой стратегии е - U? 2 =Зр + (-р).

Построим графики функций выигрыша второго игрока (рис. 2.36).


Рис. 2.36

Случай 1. Пусть р d. Но наилучшим ответом первого игрока на стратегию второго d является чистая стратегия b (2 > 0), т.е. р- 0, что удовлетворяет исходному условию р 0,5. Следовательно, (b , d) - равновесие Нэша.

Случай 2. Пусть р е (0,5; 1). Тогда второй игрок выбирает чистую стратегию е. Но наилучшим ответом первого игрока на стратегию второго е является чистая стратегия а (4 > 1), т.е. р = 1, что не удовлетворяет исходному условию. В данном промежутке нет равновесий Нэша.

Случай 3. Пусть р = 0.5. Тогда вторым игроком не будет играться стратегия с, г.е. q - 0. Рассмотрим игру

Математическое ожидание выигрыша первого игрока равно

Значение р = 0,5 может быть наилучшим ответом на смешанную стратегию второго игрока только при г = 0,6. Тогда исход (0,5а + 0,56, 0,6d + + 0,4с) - равновесие Нэша.

К тому же результату мы придем и из других рассуждений. А именно, для первого игрока значение р = 0,5 возможно только в случае его безразличия к выбору стратегии а или Ь. Э го значит:

Случай 4. Пусть р= 1. Тогда вторым игроком не будет играться стратегия d, т.е. г = 0. Матрица принимает вид

Тогда (a, qc + (1 - q)e) - равновесие Нэша при любых

Пример 2.26. Найти все равновесия Нэша в смешанных стратегиях в биматричной игре

Решение

Рассмотрим выигрыши второго игрока при использовании им чистых стратегий в ответ на смешанную стратегию первого игрока:

Построим графики этих функций (рис. 2.37).


Рис. 2.37

В точке А пересекаются прямые d не. Найдем точку пересечения:

В точке В пересекаются прямые сие. Найдем точку пересечения:

Ломаная линия MABN - наилучший ответ второго игрока при различных значениях р. Рассмотрим несколько случаев.

Случай 1:

чистая стратегия d. d й, что соответствует значению b, d).

Случай 2: . Тогда наилучшим ответом второго игрока является

чистая стратегия е. Но наилучшим ответом первого игрока на чистую стратегию е второго игрока является чистая стратегия а , что соответствует значению . В этом промежутке нет равновесий Нэша.

Случай 3: . Тогда наилучшим ответом второго игрока является

чистая стратегия с. Но наилучшим ответом первого игрока на чистую стратегию с второго игрока является чистая стратегия а , что соответствует значению . В этом промежутке получили единственное равновесие Нэша (а } с).

Случай 4: (точка Л). В этой точке заведомо не играется стратегия с. Матрица игры принимает вид

Рассмотрим математическое ожидание выигрыша первого игрока:

При равновесном по Нэшу исходе первый игрок максимизирует по р свою функцию полезности:

Очевидно, если является оптимальным для первого игрока, то

. Это значение можно получить из условия равенства значений функции выигрыша первого игрока при выборе им а и /;. Иными словами, первому игроку безразлично, выберет он а или b :

Следовательно, профиль стратегий является равно

весием Нэша.

Случай 5: (точка В). В этой точке заведомо не играется стратегия d. Матрица игры принимает вид

Поскольку а >- b , то р = 1 , что противоречит исходному условию Следовательно, не существует равновесия Нэша, при котором второй игрок выбирает

Этот метод решения можно применять для нахождения равновесий Нэша в любых биматричных играх размерности 2 хп или п х 2, и, следовательно, он более универсален, чем метод, примененный в способе 1 решения предыдущего примера.

  • Здесь и далее в аналогичных примерах стратегии Саши (Футбол, Балет) обозначенысловом, начинающимся с заглавной буквы, стратегии Маши - со строчной.

И Оскар Моргенштерн стали основателями нового интересного направления математики, которое получило название "теория игр". В 1950-е годы этим направлением заинтересовался молодой математик Джон Нэш. Теория равновесия стала темой его диссертации, которую он написал, будучи в возрасте 21 год. Так родилась новая стратегия игр под названием «Равновесие по Нэшу», заслужившая Нобелевскую премию спустя много лет - в 1994 году.

Долгий разрыв между написанием диссертации и всеобщим признанием стал испытанием для математика. Гениальность без признания вылилась в серьезные ментальные нарушения, но и эту задачу Джон Нэш смог решить благодаря прекрасному логическуму разуму. Его теория "равновесие по Нэшу" удостоилась премии Нобеля, а его жизнь экранизации в фильме «Beautiful mind» («Игры разума»).

Кратко о теории игр

Поскольку теория равновесия Нэша объясняет поведение людей в условиях взаимодействия, поэтому стоит рассмотреть основные понятия теории игр.

Теория игр изучает поведение участников (агентов) в условиях взаимодействия друг с другом по типу игры, когда исход зависит от решения и поведения нескольких людей. Участник принимает решения, руководствуясь своими прогнозами относительно поведения остальных, что и называется игровой стратегией.

Существует также доминирующая стратегия, при которой участник получает оптимальный результат при любом поведении других участников. Это наилучшая безпроигрышная стратегия игрока.

Дилемма заключенного и научный прорыв

Дилемма заключенного - это случай с игрой, когда участники вынуждены принимать рациональные решения, достигая общей цели в условии конфликта альтернатив. Вопрос заключается в том, какой из этих вариантов он выберет, осознавая личный и общий интерес, а также невозможность получить и то, и другое. Игроки словно заключены в жесткие игровые условия, что порой заставляет их мыслить очень продуктивно.

Эту дилемму исследовал американский математик Равновесие, которое он вывел, стало революционным в своем роде. Особенно ярко эта новая мысль повлияла на мнение экономистов о том, как делают выбор игроки рынка, учитывая интересы других, при плотном взаимодействии и пересечении интересов.

Лучше всего изучать теорию игр на конкретных примерах, поскольку сама эта математическая дисциплина не является сухо-теоретической.

Пример дилеммы заключенного

Пример, два человека совершили грабеж, попали в руки полиции и проходят допрос в отдельных камерах. При этом служители полиции предлагают каждому участнику выгодные условия, при которых он выйдет на свободу в случае дачи показаний против своего напарника. У каждого из преступников существует следующий набор стратегий, которые он будет рассматривать:

  1. Оба одновременно дают показания и получают по 2,5 года в тюрьме.
  2. Оба одновременно молчат и получают по 1 году, поскольку в таком случае доказательная база их вины будет мала.
  3. Один дает показания и получает свободу, а другой молчит и получает 5 лет тюрьмы.

Очевидно, что исход дела зависит от решения обоих участников, но сговориться они не могут, поскольку сидят в разных камерах. Также ярко виден конфликт их личных интересов в борьбе за общий интерес. У каждого из заключенных есть два варианта действий и 4 варианта исходов.

Цепь логических умозаключений

Итак, преступник А рассматривает следующие варианты:

  1. Я молчу и молчит мой напарник — мы оба получим по 1 году тюрьмы.
  2. Я сдаю напарника и он сдает меня — мы оба получим по 2,5 года тюрьмы.
  3. Я молчу, а напарник меня сдает — я получу 5 лет тюрьмы, а он свободу.
  4. Я сдаю напарника, а он молчит - я получаю свободу, а он 5 лет тюрьмы.

Приведем матрицу возможных решений и исходов для наглядности.

Таблица вероятных исходов дилеммы заключенного.

Вопрос состоит в том, что выберет каждый участник?

«Молчать, нельзя говорить» или «молчать нельзя, говорить»

Чтобы понять выбор участника, нужно пройти по цепочке его размышлений. Следуя рассуждениям преступника А: если я промолчу и промолчит мой напарник, мы получим минимум срока (1 год), но я не могу узнать, как он себя поведет. Если он даст показания против меня, то мне также лучше дать показания, иначе я могу сесть на 5 лет. Лучше мне сесть на 2,5 года, чем на 5 лет. Если он промолчит, то мне тем более нужно дать показания, поскольку так я получу свободу. Точно так же рассуждает и участник B.

Нетрудно понять, что доминирующая стратегия для каждого из преступников - это дача показаний. Оптимальная точка этой игры наступает тогда, когда оба преступника дают показания и получают свой «приз» — 2,5 года тюрьмы. Теория игр Нэша называет это равновесием.

Неоптимальное оптимальное решение по Нэшу

Революционность нэшевского взгляда в том, не является оптимальным, если рассмотреть отдельного участника и его личный интерес. Ведь наилучший вариант - это промолчать и выйти на свободу.

Равновесие по Нэшу - это точка соприкосновения интересов, где каждый участник выбирает такой вариант, который для него оптимальный только при условии, что другие участники выбирают определенную стратегию.

Рассматривая вариант, когда оба преступника молчат и получают всего по 1 году, можно назвать него Парето-оптимальным вариантом. Однако он возможен, только если преступники смогли бы сговориться заранее. Но даже это не гарантировало бы этого исхода, поскольку соблазн отступить от уговора и избежать наказания велик. Отсутствие полного доверия друг к другу и опасность получить 5 лет вынуждает выбрать вариант с признанием. Размышлять о том, что участники будут придерживаться варианта с молчанием, действуя согласованно, просто нерационально. Такой вывод можно сделать, если изучать равновесие Нэша. Примеры только доказывают правоту.

Эгоистично или рационально

Теория равновесия Нэша дала потрясающие выводы, опровергнувшие существующие до этого принципы. Например, Адам Смит рассматривал поведение каждого из участников как абсолютно эгоистичное, что и приводило систему в равновесие. Эта теория носила название «невидимая рука рынка».

Джон Нэш увидел, что если все участники будут действовать, преследуя только свои интересы, то это никогда не приведет к оптимальному групповому результату. Учитывая, что рациональное мышление присуще каждому участнику, более вероятен выбор, который предлагает стратегия равновесия Нэша.

Чисто мужской эксперимент

Ярким примером может служить игра «парадокс блондинки», которая хотя и кажется неуместной, но является яркой иллюстрацией, показывающей, как работает теория игр Нэша.

В этой игре нужно представить, что компания свободных парней пришла в бар. Рядом оказывается компания девушек, одна из которых предпочтительнее других, скажем блондинка. Как парням повести себя, чтобы получить наилучшую подругу для себя?

Итак, рассуждения парней: если все начнут знакомиться с блондинкой, то, скорее всего, она никому не достанется, тогда и ее подруги не захотят знакомства. Никто не хочет быть вторым запасным вариантом. Но если парни выберут избегать блондинку, то вероятность каждому из парней найти среди девушек хорошую подругу высока.

Ситуация равновесия по Нэшу неоптимальна для парней, поскольку, преследуя лишь свои эгоистические интересы, каждый выбрал бы именно блондинку. Видно, что преследование только эгоистичных интересов будет равнозначно краху групповых интересов. Равновесие по Нэшу будет значить то, что каждый парень действует в своих личных интересах, которые соприкасаются с интересами всей группы. Это неоптимальный вариант для каждого лично, но оптимальный для каждого, исходя из общей стратегии успеха.

Вся наша жизнь игра

Принятие решений в реальных условиях очень напоминает игру, когда вы ожидаете определенного рационального поведения и от других участников. В бизнесе, в работе, в коллективе, в компании и даже в отношениях с противоположным полом. От больших сделок и до обычных жизненных ситуаций все подчиняется тому или иному закону.

Конечно, рассмотренные игровые ситуации с преступниками и баром - это всего лишь отличные иллюстрации, демонстрирующие равновесие Нэша. Примеры таких дилемм очень часто возникают на реальном рынке, а особенно это работает в случаях с двумя монополистами, контролирующими рынок.

Смешанные стратегии

Часто мы вовлекаемы не в одну, а сразу в несколько игр. Выбирая один из вариантов одной игре, руководствуясь рациональной стратегией, но попадаете в другую игру. После нескольких рациональных решений вы можете обнаружить, что ваш результат вас не устраивает. Что же предпринимать?

Рассмотрим два вида стратегии:

  • Чистая стратегия - это поведение участника, которое исходит из размышления над возможным поведением других участников.
  • Смешанная стратегия или случайная стратегия - это чередование чистых стратегий случайным образом или выбор чистой стратегии с определенной вероятностью. Такую стратегию еще называют рэндомизированной.

Рассматривая такое поведение, мы получаем новый взгляд на равновесие по Нешу. Если ранее говорилось о том, что игрок выбирает стратегию один раз, то можно представить и другое поведение. Можно допустить тот вариант, что игроки выбирают стратегию случайно с определенной вероятностью. Игры, в которых нельзя найти равновесия Нэша в чистых стратегиях, всегда имеют их в смешанных.

Равновесие Нэша в смешанных стратегиях называется смешанным равновесием. Это такое равновесие, где каждый участник выбирает оптимальную частоту выбора своих стратегий при условии, что другие участники выбирают свои стратегии с заданной частотой.

Пенальти и смешанная стратегия

Пример смешанной стратегии можно привести в игре в футбол. Лучшая иллюстрация смешанной стратегии - это, пожалуй, серия пенальти. Так, у нас есть вратарь, который может прыгнуть только в один угол, и игрок, который будет бить пенальти.

Итак, если в первый раз игрок выберет стратегию сделать удар в левый угол, а вратарь также упадет в этот угол и словит мяч, то как могут развиваться события во второй раз? Если игрок будет бить в противоположный угол, это, скорее всего, слишком очевидно, но и удар в тот же угол не менее очевиден. Поэтому и вратарю, и бьющему ничего не остается, как положиться на случайный выбор.

Так, чередуя случайный выбор с определенной чистой стратегией, игрок и вратарь пытаються получить максимальный результат.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться отверсии , проверенной 9 мая 2012; проверки требуют2 правки .

Перейти к: навигация ,поиск

Джон Форбс Нэш, ноябрь 2006

Равновесие Нэша (англ. Nash equilibrium ) названо в честьДжона Форбса Нэша - так втеории игр называется тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша .

Концепция равновесия Нэша (РН) впервые использована не Нэшем; Антуан Огюст Курно показал, как найти то, что мы называем равновесием Нэша, в игре Курно. Соответственно, некоторые авторы называют егоравновесием Нэша-Курно . Однако Нэш первым показал в своей диссертации понекооперативным играм в 1950-м году, что подобные равновесия должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками снулевой суммой Джоном фон Нейманом иОскаром Моргенштерном (1947).

Формальное определение

Допустим, -игра n лиц в нормальной форме, где- набор чистых стратегий, а- набор выигрышей. Когда каждый игроквыбирает стратегиюв профиле стратегий, игрокполучает выигрыш. Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии, выбранной самим игроком, но и от чужих стратегий. Профиль стратегийявляется равновесием по Нэшу, если изменение своей стратегии снане выгодно ни одному игроку, то есть для любого

Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешитьсмешанные стратегии , тогда в каждой игреn игроков будет хотя бы одно равновесие Нэша.

Литература

    Васин А. А., Морозов В. В. Теория игр и модели математической экономики - М.: МГУ, 2005, 272 с.

    Воробьев Н. Н. Теория игр для экономистов-кибернетиков - М.: Наука, 1985

    Мазалов В. В. Математическая теория игр и приложения - Изд-во Лань, 2010, 446 с.

    Петросян Л. А. , Зенкевич Н. А., Шевкопляс Е. В. Теория игр - СПб: БХВ-Петербург, 2012, 432 с.

Эффективность по Парето

Материал из Википедии - свободной энциклопедии

Перейти к: навигация ,поиск

Оптимальность по Парето - такое состояние системы, при котором значение каждого частного критерия, описывающего состояние системы, не может быть улучшено без ухудшения положения других элементов.

Таким образом, по словам самого Парето : «Всякое изменение, которое никому не приносит убытков, а некоторым людям приносит пользу (по их собственной оценке), является улучшением». Значит, признаётся право на все изменения, которые не приносят никому дополнительного вреда.

Множество состояний системы, оптимальных по Парето, называют «множеством Парето», «множеством альтернатив, оптимальных в смысле Парето», либо «множеством парето-оптимальных альтернатив».

Ситуация, когда достигнута эффективность по Парето - это ситуация, когда все выгоды от обмена исчерпаны.

Эффективность по Парето является одним из центральных понятий для современной экономической науки. На основе этого понятия строятся Первая и Вторая фундаментальные теоремы благосостояния . Одним из приложений Парето-оптимальности является т. н. Парето-распределение ресурсов (трудовых ресурсов и капитала) при международной экономической интеграции, то есть экономическом объединении двух и более государств. Интересно, что Парето-распределение до и после международной экономической интеграции было адекватно математически описано (Далимов Р. Т., 2008). Анализ показал, что добавленная стоимость секторов и доходы трудовых ресурсов движутся противонаправленно в соответствии с хорошо известным уравнением теплопроводности аналогично газу или жидкости в пространстве, что дает возможность применить методику анализа, используемую в физике, в отношении экономических задач по миграции экономических параметров.

Оптимум по Парето гласит, что благосостояниеобщества достигает максимума, а распределение ресурсов становится оптимальным, если любое изменение этого распределения ухудшает благосостояние хотя бы одногосубъекта экономической системы.

Парето-оптимальное состояние рынка - ситуация, когда нельзя улучшить положение любого участника экономического процесса, одновременно не снижая благосостояния как минимум одного из остальных.

Согласно критерию Парето (критерию роста общественного благосостояния), движение в сторону оптимума возможно лишь при таком распределении ресурсов, которое увеличивает благосостояние по крайней мере одного человека, не нанося ущерба никому другому.

Ситуации, когда в игре существует равновесие в доминирующих стратегиях, достаточно редки. И далеко не во всех играх можно найти решение, отбрасывая строго доминируемые стратегии. Соответствующий пример игры представлен в Таблице 16.8 .

Второй игрок выберет стратегию A, если предполагает, что первый выберет стратегию Z; в то же время стратегия B для него предпочтительнее в случае, если первый выберет Y.

Таблица 16.8.

Естественно предположить, что при отсутствии у всех игроков доминирующих стратегий, выбор каждого игрока зависит от ожиданий того, какими будут выборы других. Далее мы рассмотрим концепцию решения, основанную на этой идее.

16.2.4 Равновесие по Нэшу

Кроме ситуаций, рассмотренных в предыдущем разделе, бывают ситуации14 , которые естественно моделировать, исходя из следующих предположений:

игроки при принятии решений ориентируются на предполагаемые действия партнеров;

ожидания являются равновесными (совпадают с фактически выбранными партнерами действиями).

Если считать, что все игроки рациональны, так что каждый выбирает стратегию, дающую ему наибольший выигрыш при данных ожиданиях, то эти предположения приводят к концепции решения, называемой равновесием Нэша . В равновесии у каждого игрока нет оснований пересматривать свои ожидания.

Формально равновесие Нэша определяется следующим образом.

Определение 90:

Набор стратегий x X является равновесием Нэша15 , если

1) стратегия x i каждого игрока является наилучшим для него откликом на ожидаемые им стратегии других игроков xe −i :

ui (xi , xe −i ) = max ui (xi , xe −i ) i = 1, . . . , n;

x iX i

14 Можно представить себе популяцию игроков типа А (скажем, кошки) и игроков типа Б (скажем, мышки). Игрок типа А при встрече с игроком типа Б имеет оправданные своим или чужим опытом ожидания относительно поведения партнера типа Б, и заранее на них ориентируется (и наоборот). Однако это не единственный тип ситуаций, в которых рассматриваемый подход является адекватным.

15 Американский математик Джон Нэш получил Нобелевскую премию по экономике в 1994 г. вместе с Дж. Харшаньи и Р. Зельтеном «за новаторский анализ равновесий в теории некооперативных игр». Концепция равновесия была предложена в следующих статьях: J. F. Nash: Equilibrium Points in N-Person Games,

Proceedings of the National Academy of Sciences of the United States of America 36 (1950): 48–49; J. F. Nash: NonCooperative Games, Annals of Mathematics 54 (1951): 286–295 (рус. пер. Дж. Нэш: Бескоалиционные игры, в кн. Матричные игры, Н. Н. Воробьев (ред.), М.: Физматгиз, 1961: 205–221).

Следует оговориться, что сам Нэш не вводил в определение ожиданий. Исходное определение Нэша совпадает с тем свойством, о котором говорится далее.

xe −i = x−i i = 1, . . . , n

Заметим, что при использовании равновесия Нэша для моделирования игровых ситуаций вопросы о том, знают ли игроки цели партнеров, знают ли они о рациональности партнеров, умеют ли их просчитывать, и т. д., отходят на второй план. Способ формирования ожиданий выносится за рамки анализа; здесь важно только то, что ожидания являются равновесными.

Но если при анализе равновесия Нэша не важно, знает ли игрок цели других игроков, то может возникнуть сомнение в правомерности рассмотрения концепции Нэша в контексте игр с полной информацией. Все дело в том, что термин «полная информация» в теории игр имеет довольно узкое значение. Он фактически подразумевает только полноту сведений о типах партнеров (термин «тип игрока», разъясняется в параграфе, посвященном байесовским играм).

Как легко видеть, приведенное определение равновесия Нэша эквивалентно следующему свойству, которое обычно и используется в качестве определения:

Набор стратегий x X является равновесием Нэша, если стратегия xi каждого игрока является наилучшим для него откликом на стратегии других игроков x−i :

ui (xi , x−i ) = max ui (xi , x−i ) i = 1, . . . , n

x iX i

Это свойство можно также записать в терминах так называемых функций (отображений) отклика.

Определение 91:

Отображение отклика i-го игрока,

Ri : X−i 7→Xi

сопоставляет каждому набору стратегий других игроков, x−i X−i , множество стратегий i-го игрока, каждая из которых является наилучшим откликом на x−i . Другими словами,

ui (yi , x−i ) = max ui (xi , x−i ) x−i X−i , yi Ri (x−i )x i X i

Введение отображений отклика позволяет записать определение равновесия Нэша более компактно: набор стратегий x X является равновесием Нэша, если

xi Ri (x−i ) i = 1, . . . , n

Если отклик каждого игрока однозначен (является функцией), то множество равновесий Нэша совпадает с множеством решений системы уравнений:

xi = Ri (x−i ) i = 1, . . . , n.

В Таблице 16.8 отображения отклика игроков изображены подчеркиванием выигрышей, соответствующих оптимальным действиям. Равновесие Нэша в данной игре - клетка (B, Y), поскольку выигрыши обоих игроков в ней подчеркнуты.

Проиллюстрируем использование функций отклика на примере игры, в которой игроки имеют континуум стратегий.

Игра 5. «Международная торговля»

Две страны одновременно выбирают уровень таможенных пошлин, τi . Объем торговли между странами16 , x, зависит от установленных пошлин как

x = 1 − τ1 − τ2

Цель каждой страны - максимизировать доходы ui = τi x.

Максимизируем выигрыш 1-й страны,

τ1 (1 − τ1 − τ2 )

по τ1 считая фиксированным уровень пошлины, установленный 2-й страной. Условие первого порядка имеет вид

1 − 2τ1 − τ2 = 0

Поскольку максимизируемая функция строго вогнута, то условие первого порядка соответствует глобальному максимуму.

Условие первого порядка для задачи максимизации выигрыша 2-й страны находится аналогично:

1 − τ1 − 2τ2 = 0

Решив систему из двух линейных уравнений, найдем равновесие Нэша:

τ1 = τ2 = 1/3

Оптимальный отклик 1-й страны на уровень таможенной пошлины, установленной 2-й страной описывается функцией

τ1 (τ2 ) =1 − τ 2

Аналогично, функция отклика 2-й страны имеет вид

τ2 (τ1 ) =1 − τ 1 2

Чтобы найти равновесие Нэша, требуется решить систему уравнений

τ1 (τ2 ) = τ1 ,

τ2 (τ) = τ .

Графически поиск равновесия Нэша показан не Рис. 16.3 . Точки, лежащие на кривых оптимального отклика τ1 (τ2 ) и τ2 (τ1 ), характеризуются тем, что в них касательные к кривым безразличия игроков параллельны соответствующей оси координат. Напомним, что кривой безразличия называют множество точек, в которых полезность рассматриваемого индивидуума одна и та же (ui (x) = const). Равновесие находится как точка пересечения кривых отклика.

Преимущество использования концепции равновесия Нэша состоит в том, что можно найти решение и в тех играх, в которых отбрасывание доминируемых стратегий не позволяет этого сделать. Однако сама концепция может показаться более спорной, поскольку опирается на сильные предположения о поведении игроков.

Связь между введенными концепциями решений описывается следующими утверждения-

16 В этой игре мы для упрощения не делаем различия между экспортом и импортом.

(τ2 )

равновесия

τ2 (τ1 )

Рис. 16.3. Равновесие Нэша в игре «Международная торговля»

Теорема 151:

Если x = (x1 , . . . , xm ) - равновесие Нэша в некоторой игре, то ни одна из составляющих его стратегий не может быть отброшена в результате применения процедуры последовательного отбрасывания строго доминируемых стратегий.

Обратная теорема верна в случае единственности.

Теорема 152:

Если в результате последовательного отбрасывания строго доминируемых стратегий у каждого игрока остается единственная стратегия, xi , то x = (x1 , . . . , xm ) - равновесие Нэша в этой игре.

Доказательства этих двух утверждений даны в Приложении B (с. 641 ). Нам важно здесь, что концепция Нэша не входит в противоречие с идеями рациональности, заложенной в процедуре отбрасывания строго доминируемых стратегий.

По-видимому, естественно считать, что разумно определенное равновесие, не может быть отброшено при последовательном отбрасывании строго доминируемых стратегий. Первую из теорем можно рассматривать как подтверждение того, что концепция Нэша достаточно разумна. Отметим, что данный результат относится только к строгому доминированию. Можно привести пример равновесия Нэша с одной или несколькими слабо доминируемыми стратегиями (см. напр. Таблицу16.11 на с.652 ).

16.2.5 Равновесие Нэша в смешанных стратегиях

Нетрудно построить примеры игр, в которых равновесие Нэша отсутствует. Следующая игра представляет пример такой ситуации.

Игра 6. «Инспекция»

В этой игре первый игрок (проверяемый) поставлен перед выбором - платить или не платить подоходный налог. Второй - налоговой инспектор, решает, проверять или не проверять именно этого налогоплательщика. Если инспектор «ловит» недобросовестного налогоплательщика, то взимает в него штраф и получает поощрение по службе, более чем компенсирующее его издержки; в случае же проверки исправного налогоплательщика, инспектор, не получая поощрения, тем не менее несет издержки, связанные с проверкой. Матрица выигрышей представлена в Таблице 16.9 .

Таблица 16.9.

Инспектор

проверять

не проверять

нарушать

Проверяемый

не нарушать

Если инспектор уверен, что налогоплательщик выберет не платить налог, то инспектору выгодно его проверить. С другой стороны, если налогоплательщик уверен, что его проверят, то ему лучше заплатить налог. Аналогичным образом, если инспектор уверен, что налогоплательщик заплатит налог, то инспектору не выгодно его проверять, а если налогоплательщик уверен, что инспектор не станет его проверять, то он предпочтет не платить налог. Оптимальные отклики показаны в таблице подчеркиванием соответствующих выигрышей. Очевидно, что ни одна из клеток не может быть равновесием Нэша, поскольку ни в одной из клеток не подчеркнуты одновременно оба выигрыша.

В подобной игре каждый игрок заинтересован в том, чтобы его партнер не смог угадать, какую именно стратегию он выбрал. Этого можно достигнуть, внеся в выбор стратегии элемент неопределенности.

Те стратегии, которые мы рассматривали раньше, принято называть чистыми стратегиями . Чистые стратегии в статических играх по сути дела совпадают с действиями игроков. Но в некоторых играх естественно ввести в рассмотрение также смешанные стратегии. Подсмешанной стратегией понимают распределение вероятностей на чистых стратегиях. В частном случае, когда множество чистых стратегий каждого игрока конечно,

Xi = {x1 i , . . . , xn i i }

(соответствующая игра называется конечной ,), смешанная стратегия представляется вектором вероятностей соответствующих чистых стратегий:

µi = (µ1 i , . . . , µn i i )

Обозначим множество смешанных стратегий i-го игрока через Mi :

Mi = µi µk i > 0, k = 1, . . . , ni ; µ1 i + · · · + µn i i = 1

Как мы уже отмечали, стандартное предположение теории игр (как и экономической теории) состоит в том, что если выигрыш - случайная величина, то игроки предпочитают действия, которые приносят им наибольший ожидаемый выигрыш. Ожидаемый выигрыш i-го игрока, соответствующий набору смешанных стратегий всех игроков, (µ1 , . . . , µm ), вычисляется по формуле

Ожидание рассчитывается в предположении, что игроки выбирают стратегии независимо (в статистическом смысле).

Смешанные стратегии можно представить как результат рандомизации игроком своих действий, то есть как результат их случайного выбора. Например, чтобы выбирать каждую из двух возможных стратегий с одинаковой вероятностью, игрок может подбрасывать монету.

Эта интерпретация подразумевает, что выбор стратегии зависит от некоторого сигнала, который сам игрок может наблюдать, а его партнеры - нет17 . Например, игрок может выбирать стратегию в зависимости от своего настроения, если ему известно распределение вероятностей его настроений, или от того, с какой ноги он в этот день встал18 .

Определение 92:

Набор смешанных стратегий µ = (µ1 , . . . , µm ) являетсяравновесием Нэша в смешанных стратегиях , если

1) стратегия µ i каждого игрока является наилучшим для него откликом на ожидаемые им стратегии других игроков µe −i :

U(µi , µe −i ) = max U(µi , µe −i ) i = 1, . . . , n;

µ iM i

2) ожидания совпадают с фактически выбираемыми стратегиями:

µe −i = µ−i i = 1, . . . , n.

Заметим, что равновесие Нэша в смешанных стратегиях является обычным равновесием Нэша в так называемом смешанном расширении игры, т. е. игре, чистые стратегии которой являются смешанными стратегиями исходной игры.

Найдем равновесие Нэша в смешанных стратегиях в Игре 16.2.5 .

Обозначим через µ вероятность того, что налогоплательщик не платит подоходный налог,

а через ν - вероятность того, что налоговой инспектор проверяет налогоплательщика.

В этих обозначениях ожидаемый выигрыш налогоплательщика равен

U1 (µ, ν) = µ[ν · (−1) + (1 − ν) · 1] + (1 − µ)[ν · 0 + (1 − ν) · 0] =

= µ(1 − 2ν),

а ожидаемый выигрыш инспектора равен

U2 (µ, ν) = ν[µ · 1 + (1 − µ) · (−1)] + (1 − µ)[µ · 0 + (1 − µ) · 0] = = ν(2µ − 1)

Если вероятность проверки мала (ν < 1/2), то налогоплательщику выгодно не платить налог, т. е. выбрать µ = 1. Если вероятность проверки велика, то налогоплательщику выгодно заплатить налог, т. е. выбрать µ = 0. Если же ν = 1/2, то налогоплательщику все равно, платить налог или нет, он может выбрать любую вероятность µ из интервала . Таким образом, отображение отклика налогоплательщика имеет вид:

Рассуждая аналогичным образом, найдем отклик налогового инспектора:

0, если µ < 1/2

ν(µ) = , если µ = 1/2

1, если µ > 1/2.

17 Если сигналы, наблюдаемые игроками, статистически зависимы, то это может помочь игрокам скоординировать свои действия. Это приводит к концепции коррелированного равновесия.

18 Впоследствии мы рассмотрим, как можно достигнуть эффекта рандомизации в рамках байесовского равновесия.

Графики отображений отклика обоих игроков представлены на Рис. 16.4 . По осям на этой диаграмме откладываются вероятности (ν и µ соответственно). Они имеют единственную общую точку (1/2, 1/2). Эта точка соответствует равновесию Нэша в смешанных стратегиях. В этом равновесии, как это всегда бывает в равновесиях с невырожденными смешанными стратегиями (то есть в таких равновесиях, в которых ни одна из стратегий не выбирается с вероятностью 1), каждый игрок рандомизирует стратегии, которые обеспечивают ему одинаковую ожидаемую полезность. Вероятности использования соответствующих чистых стратегий, выбранные игроком, определяются не структурой выигрышей данного игрока, а структурой выигрышей его партнера, что может вызвать известные трудности с интерпретацией данного решения.

Рис. 16.4. Отображения отклика в игре «Инспекция»

В отличие от равновесия в чистых стратегиях, равновесие в смешанных стратегиях в конечных играх существует всегда19 , что является следствием следующего общего утверждения.

Теорема 153:

Предположим, что в игре G = hI, {Xi }i I , {ui }i I i у любого игрока множество стратегий Xi непусто, компактно и выпукло, а функция выигрыша ui (·) вогнута по xi и непрерывна. Тогда в игре G существует равновесие Нэша (в чистых стратегиях).

Существование равновесия Нэша в смешанных стратегиях в играх с конечным числом чистых стратегий является следствием того, что равновесие в смешанных стратегиях является равновесием в чистых стратегиях в смешанном расширении игры.

Теорема 154 (Следствие (Теорема Нэша)):

Равновесие Нэша в смешанных стратегиях существует в любой конечной игре.

Заметим, что существование в игре равновесия в чистых стратегиях не исключает существования равновесия в невырожденных смешанных стратегиях.

Рассмотрим в Игре 16.2.1 «Выбор компьютера» случай, когда выгоды от совместимости значительны, т. е. a < c и b < c. В этом варианте игры два равновесия в чистых стратегиях: (IBM, IBM) и (Mac, Mac). Обозначим µ и ν вероятности выбора компьютера IBM PC первым и вторым игроком соответственно. Ожидаемый выигрыш 1-го игрока равен

U1 (µ, ν) = µ[ν · (a + c) + (1 − ν) · a] + (1 − µ)[ν · 0 + (1 − ν) · c] = = µ[ν · 2c − (c − a)] + (1 − ν)c

а его отклик имеет вид

µ(ν) = ,

Ожидаемый выигрыш 2-го игрока равен

если ν < (c − a)/2c

если ν = (c − a)/2c

если ν > (c − a)/2c.

U2 (µ, ν) = ν[µ · c + (1 − µ) · 0] + (1 − ν)[µ · b + (1 − µ) · (b + c)] =

= ν[µ · 2c − (b + c)] + b + (1 − µ)c

а его отклик имеет вид

ν(µ) = ,

если µ < (b + c)/2c

если µ = (b + c)/2c

если µ > (b + c)/2c.

Графики отображений отклика и точки, соответствующие трем равновесиям изображены на Рис. 16.5 . Как видно, в рассматриваемой игре кроме двух равновесий в чистых стратегиях имеется одно равновесие в невырожденных смешанных стратегиях. Соответствующие вероятности равны

µ = b + cи ν = c − a

Рис. 16.5. Случай, когда в игре «Выбор компьютера» существует три равновесия, одно из которых - равновесие в невырожденных смешанных стратегиях

Приложение A

Теорема повторяется, номер обновляется, ссылки на это приложение нет. Можно поменять местами A и B

Теорема 155:

Предположим, что в игре G = hI, {Xi }i I , {ui0 }i I i у любого игрока множество стратегий Xi непусто, компактно и выпукло, а функция выигрыша ui (·) вогнута по xi и непрерывна. Тогда существует равновесие Нэша.

Доказательство: Докажем, что отображение отклика, Ri (·), каждого игрока полунепрерывно сверху и его значение при каждом x−i X−i непусто и выпукло. Непустота следует из теоремы Вейерштрасса (непрерывная функция на компакте достигает максимума).

16.2. Статические игры с полной информацией

Докажем выпуклость. Пусть z0 , z00 Ri (x−i ). Очевидно, что u(z0 , x−i ) = u(z00 , x−i вогнутости по xi функции ui (·) следует, что при α

u(αz0 + (1 − α)z00 , x−i ) > αu(z0 , x−i ) + (1 − α)u(z00 , x−i ) =

U(z0 , x−i ) = u(z00 , x−i )

Поскольку функция ui (·) достигает максимума в точках z0 и z00 , то строгое неравенство

невозможно. Таким образом,

αz0 + (1 − α)z00 Ri (x−i )

Докажем теперь полунепрерывность сверху отображения Ri (·). Рассмотрим последовательность xn i сходящуюся к x¯i и последовательность xn −i сходящуюся к x¯−i , причем xn i Ri (xn −i ). Заметим, что в силу компактности множеств Xj x¯i Xi и x¯−i X−i . Нам нужно доказать, что x¯i Ri (x¯−i ). По определению отображения отклика

u(xn i , xn −i ) > u(xi , xn −i ) xi Xi , n

Из непрерывности функции ui (·) следует, что

u(¯xi , x¯−i ) > u(xi , x¯−i ) xi Xi

Тем самым, по введенному выше определению отображения отклика, x¯i Ri (x¯−i ). Опираясь на доказанные только что свойства отображения Ri (·) и на теорему Какутани,

докажем существование равновесия по Нэшу, то есть такого набора стратегий x X , для

которого выполнено

xi Ri (x−i ) i = 1, . . . , n

Определим отображение R(·) из X в X следующим образом:

R(x) = R1 (x−1 ) × · · · × Rn (x−n )

Отметим, что это отображение удовлетворяет тем же свойствам, что и каждое из отображений Ri (·), так как является их декартовым произведением.

Отображение R(·) и множество X удовлетворяют свойствам, которые необходимы для выполнения теоремы Какутани. Таким образом, существует неподвижная точка отображения

Очевидно, что точка x есть равновесие по Нэшу.

Приложение B

В этом приложении мы формально докажем утверждения о связи между равновесием Нэша и процедурой последовательного отбрасывания строго доминируемых стратегий.

Сначала определим формально процедуру последовательного отбрасывания строго доминируемых стратегий. Пусть исходная игра задана как

G = hI, {Xi }I , {ui }I i.

Определим последовательность игр {G[t] }t=0,1,2,... , каждая из которых получается из последующей игры отбрасыванием строго доминируемых стратегий. Игры отличаются друг от друга множествами допустимых стратегий:

G[t] = hI, {Xi [t] }I , {ui }I i

Процедура начинается с G= G.

Множество допустимых стратегий i-го игрока на шаге t + 1 рассматриваемой процедуры берется равным множеству не доминируемых строго стратегий i-го игрока в игре t-го шага. Множества не доминируемых строго стратегий будем обозначать через NDi (см. определение строго доминируемых стратегий (Определение89 , с.631 )). Формально

NDi = xi Xi yi Xi : ui (yi , x−i ) > ui (xi , x−i ) x−i X−i

Таким образом, можно записать шаг рассматриваемой процедуры следующим образом:

X i = ND i [t]

где NDi [t] - множество не доминируемых строго стратегий в игре G[t] .

Приведем теперь доказательства Теорем 151 и152 (с.636 ). Теорема151 утверждает следующее:

: Если x = (x1 , . . . , xm ) - равновесие Нэша в некоторой игре, то ни одна из стратегий не может быть отброшена в результате применения процедуры последовательного отбрасывания строго доминируемых стратегий.

Если использовать только что введенные обозначения, то Теорема 151 утверждает, что если x - равновесие Нэша в исходной игре G, то на любом шаге t выполнено

xi Xi [t] , i I, t = 1, 2, . . .

x X[t] , t = 1, 2, . . .

Доказательство (Доказательство Теоремы 151 ): Пусть есть такой шаг τ , что на нем должна быть отброшена стратегия xi некоторого игрока i I . Предполагается, что на предыдущих шагах ни одна из стратегий не была отброшена:

x X[t] , t = 1, . . . , τ.

По определению строгого доминирования существует другая стратегия игрока i, x0 i Xi [τ] , которая дает этому игроку в игре G[τ] более высокий выигрыш при любых выборах других

ui (x0 i , x−i ) > ui (xi , x−i ) x−i X− [τ i ]

В том числе, это соотношение должно быть выполнено для x−i , поскольку мы предположили, что стратегии x−i не были отброшены на предыдущих шагах процедуры (x−i X− [τ i ] ). Значит,

: Если в результате последовательного отбрасывания строго доминируемых стратегий у каждого игрока остается единственная стратегия, xi , то x = (x1 , . . . , xm ) - равновесие Нэша в этой игре.

Данная теорема относится к случаю, когда в процессе отбрасывания строго доминируемых

стратегий начиная с некоторого шага ¯ остается единственный набор стратегий, т. е. t x

Теорема утверждает, что x является единственным равновесием Нэша исходной игры.

Доказательство (Доказательство Теоремы 152 ): Поскольку, согласно доказанной только что теореме, ни одно из равновесий Нэша не может быть отброшено, нам остается только доказать, что указанный набор стратегий x является равновесием Нэша. Предположим, что это не так. Это означает, что существует стратегия x˜i некоторого игрока i, такая что

ui (xi , x−i ) < ui (˜xi , x−i )

По предположению, стратегия x˜i была отброшена на некотором шаге τ , поскольку она не совпадает с xi . Таким образом, существует некоторая строго доминирующая ее стратегия x0 i Xi [τ] , так что

ui (x0 i , x−i ) > ui (˜xi , x−i ) x−i X− [τ i ]

В том числе это неравенство выполнено при x−i = x−i :

ui (x0 i , x−i ) > ui (˜xi , x−i )

Стратегия x0 i не может совпадать со стратегией xi , поскольку в этом случае вышеприведенные неравенства противоречат друг другу. В свою очередь, из этого следует, что должна существовать стратегия x00 i , которая доминирует стратегию x0 i на некотором шаге τ0 > τ , т. е.

(x00

[τ0 ]

−i

В том числе

ui (x00 i , x−i ) > ui (x0 i , x−i )

Можно опять утверждать, что стратегия x00 i не может совпадать со стратегией xi , иначе вышеприведенные неравенства противоречили бы друг другу.

Продолжая эти рассуждения, мы получим последовательность шагов τ < τ0 < τ00 < . . .

и соответствующих допустимых стратегий x0 i , x00 i , x000 i , . . ., не совпадающих с xi . Это противо-

/ 667. Два игрока размещают некоторый объект на плоскости, то есть выбирают его координаты (x, y). Игрок 1 находится в точке (x 1 , y1 ), а игрок 2 - в точке (x2 , y2 ). Игрок 1 выбирает координату x, а игрок 2 - координату y. Каждый стремиться, чтобы объект находился как можно ближе к нему. Покажите, что в этой игре у каждого игрока есть строго доминирующая стратегия.

/ 668. Докажите, что если в некоторой игре у каждого из игроков существует строго доминирующая стратегия, то эти стратегии составляют единственное равновесие Нэша.

/ 669. Объясните, почему равновесие в доминирующих стратегиях должно быть также равновесием в смысле Нэша. Приведите пример игры, в которой существует равновесие в доминирующих стратегиях, и, кроме того, существуют равновесия Нэша, не совпадающие с равновесием в доминирующих стратегиях.

Найдите в следующих играх все равновесия Нэша.

/ 670. Игра 16.2.1 (с.625 ), выигрыши которой представлены в Таблице??////??

/ 671. «Орехи»

Два игрока делят между собой 4 ореха. Каждый делает свою заявку на орехи: xi = 1, 2 или 3. Если x1 + x2 6 4, то каждый получает сколько просил, в противном случае оба не получают ничего.

/ 672. Два преподавателя экономического факультета пишут учебник. Качество учебника (q) зависит от их усилий (e1 и e2 соответственно) в соответствии с функцией

q = 2(e1 + e2 ).

Целевая функция каждого имеет вид

ui = q − ei ,

т. е. качество минус усилия. Можно выбрать усилия на уровне 1, 2 или 3.

/ 673. «Третий лишний» Каждый из трех игроков выбирает одну из сторон монеты: «орёл» или «решка». Если

выборы игроков совпали, то каждому выдается по 1 рублю. Если выбор одного из игроков отличается от выбора двух других, то он выплачивает им по 1 рублю.

/ 674. Три игрока выбирают одну из трех альтернатив: A, B или C . Альтернатива выбирается голосованием большинством голосов. Каждый из игроков голосует за одну и только за одну альтернативу. Если ни одна из альтернатив не наберет большинство, то будет выбрана альтернатива A. Выигрыши игроков в зависимости от выбранной альтернативы следующие:

u1 (A) = 2, u2 (A) = 0, u3 (A) = 1,

u1 (B) = 1, u2 (B) = 2, u3 (B) = 0,

u1 (C) = 0, u2 (C) = 1, u3 (C) = 2.

/ 675. Формируются два избирательных блока, которые будут претендовать на места в законодательном собрании города N-ска. Каждый из блоков может выбрать одну из трех ориентаций: «левая» (L), «правая» (R) и «экологическая» (E). Каждая из ориентаций может привлечь 50, 30 и 20% избирателей соответственно. Известно, что если интересующая их ориентация не представлена на выборах, то избиратели из соответствующей группы не будут голосовать. Если блоки выберут разные ориентации, то каждый получит соответствующую долю голосов. Если блоки выберут одну и ту же ориентацию, то голоса соответствующей группы избирателей разделятся поровну между ними. Цель каждого блока - получить наибольшее количество голосов.

/ 676. Два игрока размещают точку на плоскости. Один игрок выбирает абсциссу, другой -

ординату. Их выигрыши заданы функциями:

а) ux (x, y) = −x2 + x(y + a) + y2 , uy (x, y) = −y2 + y(x + b) + x2 ,

б) ux (x, y) = −x2 − 2ax(y + 1) + y2 , uy (x, y) = −y2 + 2by(x + 1) + x2 , в) ux (x, y) = −x − y/x + 1/2y2 , uy (x, y) = −y − x/y + 1/2x2 ,

(a, b - коэффициенты).

/ 677. «Мороженщики на пляже»

Два мороженщика в жаркий день продают на пляже мороженое. Пляж можно представить как единичный отрезок. Мороженщики выбирают, в каком месте пляжа им находиться, т. е. выбирают координату xi . Покупатели равномерно рассредоточены по пляжу и покупают мороженое у ближайшего к ним продавца. Если x1 < x2 , то первый обслуживают (x1 + x2 )/2 долю пляжа, а второй - 1 − (x1 + x2 )/2. Если мороженщики расположатся в одной и той же точке (x1 = x2 ), покупатели поровну распределятся между ними. Каждый мороженщик стремиться обслуживать как можно большую долю пляжа.

/ 678. «Аукцион» Рассмотрите аукцион, подобный описанному в Игре 16.2.2 , при условии, что выигравший

аукцион игрок платит названную им цену.

/ 679. Проанализируйте Игру 16.2.1 «Выбор компьютера» (с.624 ) и найдите ответы на следующие вопросы:

а) При каких условиях на параметры a, b и c будет существовать равновесие в доминирующих стратегиях? Каким будет это равновесие?

б) При каких условиях на параметры будет равновесием Нэша исход, когда оба выбирают IBM? Когда это равновесие единственно? Может ли оно являться также равновесием в доминирующих стратегиях?

/ 680. Каждый из двух соседей по подъезду выбирает, будет он подметать подъезд раз в неделю или нет. Пусть каждый оценивает выгоду для себя от двойной чистоты в a > 0 денежных единиц, выгоду от одинарной чистоты - в b > 0 единиц, от неубранного подъезда - в 0, а свои затраты на личное участие в уборке - в c > 0. При каких соотношениях между a, b и c в игре сложатся равновесия вида: (0) никто не убирает, (1) один убирает, (2) оба убирают?

/ 681. Предположим, что в некоторой игре двух игроков, каждый из которых имеет 2 стратегии, существует единственное равновесие Нэша. Покажите, что в этой игре хотя бы у одного из игроков есть доминирующая стратегия.

/ 682. Каждый из двух игроков (i = 1, 2) имеет по 3 стратегии: a, b, c и x, y, z соответственно. Взяв свое имя как бесконечную последовательность символов типа иваниваниван. . . , задайте выигрыши первого игрока так: u1 (a, x) = «и», u1 (a, y) = «в», u1 (a, z) = «а», u1 (b, x) = «н», u1 (b, y) = «и», u1 (b, z) = «в», u1 (c, x) = «а», u1 (c, y) = «н», u1 (c, z) = «и». Подставьте вместо каждой буквы имени ее номер в алфавите, для чего воспользуйтесь Таблицей16.10 . Аналогично используя фамилию, задайте выигрыши второго игрока, u2 (·).

1) Есть ли в Вашей игре доминирующие и строго доминирующие стратегии? Если есть, то образуют ли они равновесие в доминирующих стратегиях?

2) Каким будет результат последовательного отбрасывания строго доминируемых страте-

3) Найдите равновесия Нэша этой игры.

Таблица 16.10.

/ 683. Составьте по имени, фамилии и отчеству матричную игру трех игроков, у каждого из которых по 2 стратегии. Ответьте на вопросы предыдущей задачи.

/ 684. Заполните пропущенные выигрыши в следующей таблице так, чтобы в получившейся игре. . .

(0) не было ни одного равновесия Нэша,

было одно равновесие Нэша,

было два равновесия Нэша,

было три равновесия Нэша,

(4) было четыре равновесия Нэша.

/ 685. 1) Объясните, почему в любом равновесии Нэша выигрыш i-го игрока не может быть меньше, чем

min max ui (xi , x−i ).

x −iX −ix iX i

2) Объясните, почему в любом равновесии Нэша выигрыш i-го игрока не может быть

меньше, чем

x iX ix −iX −i