Биологические цепочки питания. Пищевые цепи и трофические уровни

Любому живому существу на нашей планете для нормального развития необходимо питание. Питание — это процесс поступления энергии и необходимых химических элементов в живой организм. Источником питания для одних животных служат другие растения и животные. Процесс перехода энергии и питательных веществ от одного живого организма к другому происходит путем поедания одних другими. Одни животные и растения служат пищей для других. Таким образом, энергия может передаваться через несколько звеньев.

Совокупность всех звеньев в этом процессе называется цепью питания . Пример пищевой цепочки можно увидеть в лесу, когда птица съест червяка, а потом сама станет пищей для рыси.

Все виды живых организмов, в зависимости от того, какое место они занимают, делятся на три вида:

  • продуценты;
  • консументы;
  • редуценты.

Продуцентами являются живые организмы , которые самостоятельно вырабатывают питательные вещества. Например, растения или водоросли. Для выработки органических веществ продуценты могут использовать солнечный свет или простые неорганические соединения, такие как углекислый газ или сероводород. Такие организмы ещё называются автотрофными. Автотрофы являются первым звеном любой пищевой цепочки и составляют её основу, а энергия, полученная этими организмами, поддерживает каждое следующее звено.

Консументы

Консументы это следующее звено . Роль консументов выполняют гетеротрофные организмы, то есть те, которые не вырабатывают самостоятельно органические вещества, а используют в пищу другие организмы. Консументов можно разделить на несколько уровней. Например, к первому уровню относятся все травоядные животные, некоторые виды микроорганизмов, а также планктон. Грызуны, зайцы, лоси, кабаны, антилопы и даже бегемоты — все относятся к первому уровню.

Ко второму уровню относят мелких хищников, таких как: дикие кошки, норки, хорьки, рыбы, питающиеся планктоном, совы, змеи. Эти животные служат пищей для консументов третьего уровня — более крупных хищников. Это такие животные, как: лиса, рысь, лев, ястреб, щука и др. Таких хищников называют ещё высшими. Высшие хищники необязательно поедают только тех, кто находится на предыдущем уровне. Например, мелкая лиса может стать добычей ястреба, а рысь может охотиться и на грызунов, и на сов.

Редуценты

Это такие организмы, которые перерабатывают продукты жизнедеятельности животных и их мертвую плоть в неорганические соединения. К ним относятся некоторые виды грибов, бактерии гниения . Роль редуцентов в том, чтобы замкнуть круговорот веществ в природе. Они возвращают в почву и воздух воду и простейшие неорганические соединения, которые используют продуценты для своей жизнедеятельности. Редуценты перерабатывают не только умерших животных, но и например, опавшие листья, которые начинают гнить в лесу или сухую траву в степи.

Трофические сети

Все пищевые цепочки существуют в постоянной взаимосвязи друг с другом. Совокупность нескольких пищевых цепей составляет трофическую сеть . Это своеобразная пирамида, состоящая из нескольких уровней.Каждый уровень образуют определенные звенья цепи питания. Например, в цепочках:

  • муха — лягушка — цапля;
  • кузнечик — змея — сокол;

Муха и кузнечик будут относиться к первому трофическому уровню, змея и лягушка ко второму, а цапля и сокол к третьему.

Виды пищевых цепей: примеры в природе

Они разделяются на пастбищные и детритные. Пастбищные цепи питания распространены в степях и в мировом океане. Началом этих цепей служат продуценты. Например,трава или водоросли. Дальше идут консументы первого порядка, например, травоядные животные или малюски и мелкие ракообразные, питающиеся водорослями. Далее в цепи идут мелкие хищники, такие как, лисы, норки, хорьки, окуни, совы. Замыкают цепь суперхищники, такие как, львы, медведи, крокодилы. Суперхищники не являются добычей для других животных, но после своей гибели служат пищевым материалом для редуцентов. Редуценты участвуют в процессе разложения останков этих животных.

Детритные цепи питания берут свое начало от гниющих органических веществ. Например, от разлагающейся листвы и оставшейся травы или от опавших ягод. Такие цепи распространены в лиственных и смешанных лесах. Опавшие гниющие листья — мокрица — ворон. Вот пример такой пищевой цепи. Большинство животных и микроорганизмов могут одновременно являться звеньями обоих видов пищевых цепочек. Примером этого может служит дятел, питающийся жучками, которые разлагают мертвое дерево. Это представители детритной цепи питания А сам дятел может стать добычей уже для мелкого хищника, например, для рыси. Рысь может охотиться ещё и на грызунов — представителей пастбищной цепи питания.

Любая пищевая цепь не может быть очень длинной. Это связано с тем, что на каждый последующий уровень передается только 10% энергии предыдущего уровня. Большинство из них состоит от 3 до 6 звеньев.

Структура пищевой цепи

Пищевая цепь представляет собой связную линейную структуру из звеньев , каждое из которых связано с соседними звеньями отношениями «пища - потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды . Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами . Чаще всего на этом месте находятся растения , грибы , водоросли . Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия . В процессе питания потенциальная энергия пищи переходит к её потребителю. При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

Трофическая сеть

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

Трофический уровень

Трофический уровень - это совокупность организмов, которые, в зависимости от способа их питания и вида корма, составляют определённое звено пищевой цепи.

В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическим уровнем.

Типы пищевых цепей

Существуют 2 основных типа трофических цепей - пастбищные и детритные .

В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы , затем идут потребляющие их (консументы) растительноядные животные (например, зоопланктон , питающийся фитопланктоном), потом хищники 1-го порядка (например, рыбы , потребляющие зоопланктон), хищники 2-го порядка (например, щука , питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

В детритных трофических цепях (цепи разложения), наиболее распространённых в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации . Таким образом, детритные трофические цепи начинаются от детрита (органических останков), идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям - хищникам. В водных экосистемах (особенно в эвтрофных водоёмах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.

Наземные детритные цепи питания более энергоёмки, поскольку большая часть органической массы, создаваемой автотрофными организмами, остаётся невостребованной и отмирает, формируя детрит. В масштабах планеты, на долю цепей выедания приходится около 10 % энергии и веществ, запасённых автотрофами, 90 % же процентов включается в круговорот посредством цепей разложения.

См. также

Литература

  • Трофическая цепь / Биологический энциклопедический словарь / глав. ред. М. С. Гиляров. - М.: Советская энциклопедия, 1986. - С. 648-649.

Wikimedia Foundation . 2010 .

Смотреть что такое "Пищевая цепь" в других словарях:

    - (цепь питания, трофическая цепь), взаимоотношения между организмами, при которых группы особей (бактерии, грибы, растения, животные) связаны друг с другом отношениями: пища потребитель. Пищевая цепь включает обычно от 2 до 5 звеньев: фото и… … Современная энциклопедия

    - (цепь питания трофическая цепь), ряд организмов (растений, животных, микроорганизмов), в котором каждое предыдущее звено служит пищей для последующего. Связаны друг с другом отношениями: пища потребитель. Пищевая цепь включает обычно от 2 до 5… … Большой Энциклопедический словарь

    ПИЩЕВАЯ ЦЕПЬ, система передачи энергии от организма к организму, в которой каждый предыдущий организм истребляется последующим. В простейшей форме передача энергии начинается с растений (ПЕРВИЧНЫХ ПРОИЗВОДИТЕЛЕЙ). Следующим звеном цепи являются… … Научно-технический энциклопедический словарь

    См. Трофическая цепь. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    пищевая цепь - — EN food chain A sequence of organisms on successive trophic levels within a community, through which energy is transferred by feeding; energy enters the food chain during fixation … Справочник технического переводчика

    - (цепь питания, трофическая цепь), ряд организмов (растений, животных, микроорганизмов), в котором каждое предыдущее звено служит пищей для последующего. Связаны друг с другом отношениями: пища потребитель. Пищевая цепь включает обычно от 2 до… … Энциклопедический словарь

    пищевая цепь - mitybos grandinė statusas T sritis ekologija ir aplinkotyra apibrėžtis Augalų, gyvūnų ir mikroorganizmų mitybos ryšiai, dėl kurių pirminė augalų energija maisto pavidalu perduodama vartotojams ir skaidytojams. Vienam organizmui pasimaitinus kitu … Ekologijos terminų aiškinamasis žodynas

    - (цепь питания, трофическая цепь), ряд организмов (р ний, ж ных, микроорганизмов), в к ром каждое предыдущее звено служит пищей для последующего. Связаны друг с другом отношениями: пища потребитель. П. ц. включает обычно от 2 до 5 звеньев: фото и… … Естествознание. Энциклопедический словарь

    - (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) через консументов… … Биологический энциклопедический словарь

    См. Цепь питания … Большой медицинский словарь

Книги

  • Дилемма всеядного. Шокирующее исследование рациона современного человека , Поллан Майкл. Вы когда-нибудь задумывались о том, как еда попадает на наш стол? Вы купили продукты в супермаркете или на фермерском рынке? А может быть, вы сами вырастили помидорыили привезли гуся с…

В природе любой вид, популяция и даже отдельная особь живут не изолированно друг от друга и среды своего обитания, а, напротив, испытывают многочисленные взаимные влияния. Биотические сообщества или биоценозы - сообщества взаимодействующих живых организмов, представляющие собой устойчивую систему, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов.

Для биоценоза характерны определенные структуры : видовая, пространственная и трофическая.

Органические компоненты биоценоза неразрывно связаны с неорганическими - почвой, влагой, атмосферой, образуя вместе с ними устойчивую экосистему - биогеоценоз .

Биогеноценоз – саморегулирующаяся экологическая система, образованная совместно обитающими и взаимодействующими между собой и с неживой природой, популяциями разных видов в относительно однородных условиях среды.

Экологические системы

Функциональные системы, включающие в себя сообщества живых организмов разных видов и их среду обитания. Связи между компонентами экосистемы возникают, прежде всего, на основе пищевых взаимоотношений и способов получения энергии.

Экосистема

Совокупность видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей средой таким образом, что такое сообщество может сохраняться и функционировать необозримо длительное время. Биотическое сообщество (биоценоз) состоит из сообщества растений (фитоценоз ), животных (зооценоз ), микроорганизмов (микробоценоз ).

Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга - биосферу , обладающую устойчивостью и другими свойствами экосистемы.

Существование экосистемы возможно благодаря постоянному притоку энергии извне - таким источником энергии, как правило, является солнце, хотя не для всех экосистем это справедливо. Устойчивость экосистемы обеспечивается прямыми и обратными связями между ее компонентами, внутренним круговоротом веществ и участием в глобальных круговоротах.

Учение о биогеоценозах разработано В.Н. Сукачевым. Термин «экосистема » введен в употребление английским геоботаником А. Тенсли в 1935 г., термин «биогеоценоз » - академиком В.Н. Сукачевым в 1942 г. В биогеоценозе обязательно наличие в качестве основного звена растительного сообщества (фитоценоз), обеспечивающего потенциальную бессмертность биогеоценоза за счет энергии, вырабатываемой растениями. Экосистемы могут не содержать фитоценоз.

Фитоценоз

Растительное сообщество, исторически сложившееся в результате сочетания взаимодействующих растений на однородном участке территории.

Его характеризуют :

- определенный видовой состав,

- жизненные формы,

- ярусность (надземная и подземная),

- обилие (частота встречаемости видов),

- размещение,

- аспект (внешний вид),

- жизненность,

- сезонные изменения,

- развитие (смена сообществ).

Ярусность (этажность)

Один из характерных признаков растительного сообщества, заключающийся как бы в поэтажном его разделении как в надземном, так и в подземном пространстве.

Надземная ярусность позволяет лучше использовать свет, а подземная - воду и минеральные вещества. Обычно в лесу можно выделить до пяти ярусов: верхний (первый) - высокие деревья, второй - невысокие деревья, третий - кустарники, четвертый - травы, пятый - мхи.

Подземная ярусность - зеркальное отражение надземной: глубже всех уходят корни деревьев, близ поверхности почвы расположены подземные части мхов.

По способу получения и использования питательных веществ все организмы делятся на автотрофы и гетеротрофы . В природе возникает непрерывный круговорот биогенных веществ, необходимых для жизни. Химические вещества извлекаются автотрофами из окружающей среды и через гетеротрофы вновь в нее возвращаются. Этот процесс принимает очень сложные формы. Каждый вид использует лишь часть содержащейся в органическом веществе энергии, доводя его распад до определенной стадии. Таким образом, в процессе эволюции в экологических системах сложились цепи и сети питания .

Большинство биогеоценозов имеют сходную трофическую структуру . Основу их составляют зеленые растения - продуценты. Обязательно присутствуют растительноядные и плотоядные животные: потребители органического вещества - консументы и разрушители органических остатков - редуценты .

Количество особей в пищевой цепи последовательно уменьшается, численность жертв больше численности их потребителей, так как в каждом звене пищевой цепи при каждом переносе энергии 80-90% ее теряется, рассеиваясь в виде теплоты. Поэтому число звеньев в цепи ограничено (3-5).

Видовое разнообразие биоценоза представлено всеми группами организмов - продуцентами, консументами и редуцентами.

Нарушение какого-либо звена в цепи питания вызывает нарушение биоценоза в целом. Например, вырубка леса приводит к изменению видового состава насекомых, птиц, а, следовательно, и зверей. На безлесном участке будут складываться другие цепи питания и сформируется другой биоценоз, что займет не один десяток лет.

Цепь питания (трофическая или пищевая )

Взаимосвязанные виды, последовательно извлекающие органическое вещество и энергию из исходного пищевого вещества; при этом каждое предыдущее звено цепи является пищей для последующего.

Цепи питания в каждом природном участке с более или менее однородными условиями существования составлены комплексами взаимосвязанных видов, питающимися друг другом и образующими самоподдерживающуюся систему, в которой осуществляется круговорот веществ и энергии.

Компоненты экосистемы:

- Продуценты - автотрофные организмы (в основном зеленые растения) - единственные производители органического вещества на Земле. Богатое энергией органическое вещество в процессе фотосинтеза синтезируется из бедных энергией неорганических веществ (Н 2 0 и С0 2).

- Консументы - растительноядные и плотоядные животные, потребители органического вещества. Консументы могут быть растительноядными, когда они непосредственно используют продуценты, или плотоядными, когда они питаются другими животными. В цепи питания они чаще всего могут иметь порядковый номер с I по IV .

- Редуценты - гетеротрофные микроорганизмы (бактерии) и грибы - разрушители органических остатков, деструкторы. Их еще называют санитарами Земли.

Трофический (пищевой) уровень - совокупность организмов, объединяемых типом питания. Представление о трофическом уровне позволяет понять динамику потока энергии в экосистеме.

  1. первый трофический уровень всегда занимают продуценты (растения),
  2. второй - консументы I порядка (растительноядные животные),
  3. третий - консументы II порядка - хищники, питающиеся растительноядными животными),
  4. четвертый - консументы III порядка (вторичные хищники).

Различают следующие виды пищевых цепей:

В пастбищной цепи (цепи выедания ) основным источником пищи служат зеленые растения. Например: трава -> насекомые -> земноводные -> змеи -> хищные птицы.

- детритные цепи (цепи разложения) начинаются с детрита - отмершей биомассы. Например: листовой опад -> дождевые черви -> бактерии. Особенностью детритных цепей является также то, что в них часто продукция растений не потребляется непосредственно растительноядными животными, а отмирает и минерализуется сапрофитами. Детритные цепи характерны также для экосистем океанических глубин, обитатели которых питаются мертвыми организмами, опустившимися вниз из верхних слоев воды.

Сложившиеся в процессе эволюции взаимоотношения между видами в экологических системах, при которых многие компоненты питаются разными объектами и сами служат пищей различным членам экосистемы. Упрощенно пищевую сеть можно представить как систему переплетающихся пищевых цепей .

Организмы разных пищевых цепей, получающие пищу через равное число звеньев этих цепей, находятся на одном трофическом уровне . В то же время разные популяции одного и того же вида, входящие в различные пищевые цепи, могут находиться на разных трофических уровнях . Соотношение различных трофических уровней в экосистеме можно изобразить графически в виде экологической пирамиды .

Экологическая пирамида

Способ графического отображения соотношения различных трофических уровней в экосистеме - бывает трех типов :

Пирамида численности отражает численность организмов на каждом трофическом уровне;

Пирамида биомасс отражает биомассу каждого трофического уровня;

Пирамида энергии показывает количество энергии, прошедшее через каждый трофический уровень в течение определенного промежутка времени.

Правило экологической пирамиды

Закономерность, отражающая прогрессивное уменьшение массы (энергии, числа особей) каждого последующего звена пищевой цепи.

Пирамида численности

Экологическая пирамида, отражающая число особей на каждом пищевом уровне. В пирамиде чисел не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ, однако всегда прослеживается главная тенденция - уменьшение числа особей от звена к звену. Например, в степной экосистеме численность особей распределяется так: продуценты - 150000, травоядные консументы - 20000, плотоядные консументы - 9000 экз./ар. Биоценоз луга характеризуется следующей численностью особей на площади 4000 м 2: продуценты - 5 842 424, растительноядные консументы I порядка - 708 624, плотоядные консументы II порядка - 35 490, плотоядные консументы III порядка - 3.

Пирамида биомасс

Закономерность, согласно которой количество растительного вещества, служащего основой цепи питания (продуцентов), примерно в 10 раз больше, чем масса растительноядных животных (консументов I порядка), а масса растительноядных животных в 10 раз больше, чем плотоядных (консументов II порядка), т. е. каждый последующий пищевой уровень имеет массу в 10 раз меньшую, чем предыдущий. В среднем из 1000 кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить 10 кг своей биомассы, вторичные хищники - 1 кг.

Пирамида энергии

выражает закономерность, согласно которой поток энергии постепенно уменьшается и обесценивается при переходе от звена к звену в цепи питания. Так, в биоценозе озера зеленые растения - продуценты - создают биомассу, содержащую 295,3 кДж/см 2 , консументы I порядка, потребляя биомассу растений, создают свою биомассу, содержащую 29,4 кДж/см 2 ; консументы II порядка, используя в пищу консументов I порядка, создают свою биомассу, содержащую 5,46 кДж/см 2 . Потеря энергии при переходе от консументов I порядка к консументам II порядка, если это теплокровные животные, увеличивается. Это объясняется тем, что у данных животных много энергии уходит не только на построение своей биомассы, но и на поддержание постоянства температуры тела. Если сравнить выращивание теленка и окуня, то одинаковое количество затраченной пищевой энергии даст 7 кг говядины и лишь 1 кг рыбы, так как теленок питается травой, а окунь-хищник - рыбой.

Таким образом , первые два типа пирамид имеют ряд существенных недостатков:

Пирамида биомасс отражает состояние экосистемы на момент отбора пробы и, следовательно, показывает соотношение биомассы в данный момент и не отражает продуктивность каждого трофического уровня (т. е. его способность образовывать биомассу в течение определенного промежутка времени). Поэтому в том случае, когда в число продуцентов входят быстрорастущие виды, пирамида биомасс может оказаться перевернутой.

Пирамида энергии позволяет сравнить продуктивность различных трофических уровней, поскольку учитывает фактор времени. Кроме того, она учитывает разницу в энергетической ценности различных веществ (например, 1 г жира дает почти в два раза больше энергии, чем 1 г глюкозы). Поэтому пирамида энергии всегда суживается кверху и никогда не бывает перевернутой.

Экологическая пластичность

Степень выносливости организмов или их сообществ (биоценозов) к воздействию факторов среды. Экологически пластичные виды имеют широкую норму реакции , т. е. широко приспособлены к разной среде обитания (рыбы колюшка и угорь, некоторые простейшие живут как в пресных, так и в соленых водах). Узкоспециализированные виды могут существовать лишь в определенной среде: морские животные и водоросли - в соленой воде, речные рыбы и растения лотос, кувшинка, ряска обитают только в пресной воде.

В целом экосистема (биогеоценоз) характеризуется следующими показателями :

Видовым разнообразием,

Плотностью видовых популяций,

Биомассой.

Биомасса

Общее количество органического вещества всех особей биоценоза или вида с заключенной в нем энергией. Биомассу выражают обычно в единицах массы в пересчете на сухое вещество единицы площади или объема. Биомассу можно определить отдельно для животных, растений или отдельных видов. Так, биомасса грибов в почве составляет 0,05-0,35 т/га, водорослей - 0,06-0,5, корней высших растений - 3,0-5,0, дождевых червей - 0,2-0,5, позвоночных животных - 0,001-0,015 т/га.

В биогеоценозах различают первичную и вторичную биологическую продуктивность :

ü Первичная биологическая продуктивность биоценозов - общая суммарная продуктивность фотосинтеза, представляющая собой результат деятельности автотрофов - зеленых растений, например, сосновый лес 20- 30-летнего возраста за год производит 37,8 т/га биомассы.

ü Вторичная биологическая продуктивность биоценозов - общая суммарная продуктивность гетеротрофных организмов (консументов), которая образуется за счет использования веществ и энергии, накопленных продуцентами.

Популяции. Структура и динамика численности.

Каждый вид на Земле занимает определенный ареал , так как он способен существовать лишь в определенных условиях среды. Однако условия обитания в рамках ареала одного вида могут существенно отличаться, что приводит к распаду вида на элементарные группировки особей - популяции.

Популяция

Совокупность особей одного вида, занимающих обособленную территорию в пределах ареала вида (с относительно однородными условиями обитания), свободно скрещивающихся друг с другом (имеющих общий генофонд) и изолированных от других популяций данного вида, обладающих всеми необходимыми условиями для поддержания своей стабильности длительное время в меняющихся условиях среды. Важнейшими характеристиками популяции являются ее структура (возрастной, половой состав) и динамика численности.

Под демографической структурой популяции понимают ее половой и возрастной состав.

Пространственная структура популяции - это особенности размещения особей популяции в пространстве.

Возрастная структура популяции связана с соотношением особей различных возрастов в популяции. Особи одного возраста объединяют в когорты - возрастные группы.

В возрастной структуре популяций растений выделяют следующие периоды :

Латентный - состояние семени;

Прегенеративный (включает состояния проростка, ювенильного растения, имматурного и виргинильного растений);

Генеративный (обычно подразделяется на три подпериода - молодые, зрелые и старые генеративные особи);

Постгенеративный (включает состояния субсенильного, сенильного растений и фазу отмирания).

Принадлежность к определенному возрастному состоянию определяется по биологическому возрасту - степени выраженности определенных морфологических (например, степень расчлененности сложного листа) и физиологических (например, способность дать потомство) признаков.

В популяциях животных также можно выделить различные возрастные стадии . Например, насекомые, развивающиеся с полным метаморфозом, проходят стадии:

Личинки,

Куколки,

Имаго (взрослого насекомого).

Характер возрастной структуры популяции зависит от типа кривой выживания, свойственной данной популяции.

Кривая выживания отражает уровень смертности в различных возрастных группах и представляет собой снижающуюся линию:

  1. Если уровень смертности не зависит от возраста особей, отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни (тип I ). Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии.
  2. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение вследствие естественной (физиологической) смертности (тип II ). Близкий к этому типу характер кривой выживания свойствен человеку (хотя кривая выживания человека несколько более пологая и является чем-то средним между типами I и II). Этот тип носит название типа дрозофилы : именно его демонстрируют дрозофилы в лабораторных условиях (не поедаемые хищниками).
  3. Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие «критический» возраст, демонстрируют низкую смертность и доживают до старших возрастов. Тип носит название типа устрицы (тип III ).

Половая структура популяции

Соотношение полов имеет прямое отношение к воспроизводству популяции и ее устойчивости.

Выделяют первичное, вторичное и третичное соотношение полов в популяции:

- Первичное соотношение полов определяется генетическими механизмами - равномерностью расхождения половых хромосом. Например, у человека XY-хромосомы определяют развитие мужского пола, а XX - женского. В этом случае первичное соотношение полов 1:1, т. е. равновероятно.

- Вторичное соотношение полов - это соотношение полов на момент рождения (среди новорожденных). Оно может существенно отличаться от первичного по целому ряду причин: избирательность яйцеклеток к сперматозоидам, несущим Х- или Y-хромосому, неодинаковой способностью таких сперматозоидов к оплодотворению, различными внешними факторами. Например, зоологами описано влияние температуры на вторичное соотношение полов у рептилий. Аналогичная закономерность характерна и для некоторых насекомых. Так, у муравьев оплодотворение обеспечивается при температуре выше 20 °С, а при более низких температурах откладываются неоплодотворенные яйца. Из последних вылупляются самцы, а из оплодотворенных - преимущественно самки.

- Третичное соотношение полов - соотношение полов среди взрослых животных.

Пространственная структура популяции отражает характер размещения особей в пространстве.

Выделяют три основных типа распределения особей в пространстве:

- единообразное или равномерное (особи размещены в пространстве равномерно, на одинаковых расстояниях друг от друга); встречается в природе редко и чаще всего вызвано острой внутривидовой конкуренцией (например, у хищных рыб);

- конгрегационное или мозаичное («пятнистое», особи размещаются в обособленных скоплениях); встречается намного чаше. Оно связано с особенностями микросреды или поведения животных;

- случайное или диффузное (особи распределены в пространстве случайным образом) - можно наблюдать только в однородной среде и только у видов, которые не обнаруживают никакого стремления к объединению в группы (например, у жука в муке).

Численность популяции обозначается буквой N. Отношение прироста N к единице времени dN / dt выражает мгновенную скорость изменения численности популяции, т. е. изменение численности в момент времени t. Прирост популяции зависит от двух факторов - рождаемости и смертности при условии отсутствия эмиграции и иммиграции (такая популяция называется изолированной). Разность рождаемости b и смертности d и представляет собой коэффициент прироста изолированной популяции :

Устойчивость популяции

Это ее способность находиться в состоянии динамического (т. е. подвижного, изменяющегося) равновесия со средой: изменяются условия среды - изменяется и популяция. Одним из важнейших условий устойчивости является внутреннее разнообразие. Применительно к популяции это механизмы поддержания определенной плотности популяции.

Выделяют три типа зависимости численности популяции от ее плотности .

Первый тип (I) - самый распространенный, характеризуется уменьшением роста популяции при увеличении ее плотности, что обеспечивается различными механизмами. Например, для многих видов птиц характерны снижение рождаемости (плодовитости) при увеличении плотности популяции; увеличение смертности, снижение сопротивляемости организмов при повышенной плотности популяции; изменение возраста наступления половой зрелости в зависимости от плотности популяции.

Третий тип ( III ) характерен для популяций, в которых отмечается «эффект группы», т. е. определенная оптимальная плотность популяции способствует лучшему выживанию, развитию, жизнедеятельности всех особей, что присуще большинству групповых и социальных животных. Например, для возобновления популяций разнополых животных как минимум необходима плотность, обеспечивающая достаточную вероятность встречи самца и самки.

Тематические задания

А1. Биогеоценоз образован

1) растениями и животными

2) животными и бактериями

3) растениями, животными, бактериями

4) территорией и организмами

А2. Потребителями органического вещества в лесном биогеоценозе являются

1) ели и березы

2) грибы и черви

3) зайцы и белки

4) бактерии и вирусы

А3. Продуцентами в озере являются

2) головастики

А4. Процесс саморегуляции в биогеоценозе влияет на

1) соотношение полов в популяциях разных видов

2) численность мутаций, возникающих в популяциях

3) соотношение хищник – жертва

4) внутривидовую конкуренцию

А5. Одним из условий устойчивости экосистемы может служить

1) ее способность к изменениям

2) разнообразие видов

3) колебания численности видов

4) стабильность генофонда в популяциях

А6. К редуцентам относятся

2) лишайники

4) папоротники

А7. Если общая масса полученной потребителем 2-го порядка равна 10 кг, то какова была совокупная масса продуцентов, ставших источником пищи для данного потребителя?

А8. Укажите детритную пищевую цепь

1) муха – паук – воробей – бактерии

2) клевер – ястреб – шмель – мышь

3) рожь – синица – кошка – бактерии

4) комар – воробей – ястреб – черви

А9. Исходным источником энергии в биоценозе является энергия

1) органических соединений

2) неорганических соединений

4) хемосинтеза

1) зайцами

2) пчелами

3) дроздами-рябинниками

4) волками

А11. В одной экосистеме можно встретить дуб и

1) суслика

3) жаворонка

4) синий василек

А12. Сети питания – это:

1) связи между родителями и потомством

2) родственные (генетические) связи

3) обмен веществ в клетках организма

4) пути передачи веществ и энергии в экосистеме

А13. Экологическая пирамида чисел отражает:

1) соотношение биомасс на каждом трофическом уровне

2) соотношение масс отдельного организма на разных трофических уровнях

3) структуру пищевой цепи

4) разнообразие видов на разных трофических уровнях


Цель: расширить знания о биотических факторах среды.

Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, пресмыкающихся, птиц, млекопитающих), коллекции насекомых, влажные препараты животных, иллюстрации различных растений и животных.

Ход работы:

1. Используйте оборудование и составьте две цепи питания. Помните, что цепь всегда начинается продуцентом и заканчивается редуцентом.

________________ →________________→_______________→_____________

2. Вспомните свои наблюдения в природе и составьте две цепи питания. Подпишите продуценты, консументы (1 и 2 порядков), редуценты.

________________ →________________→_______________→_____________

_______________ →________________→_______________→_____________

Что такое цепь питания и что лежит в её основе? Чем определяется устойчи-вость биоценоза? Сформулируйте вывод.

Вывод: ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Назовите организмы, которые должны быть на пропущенном месте следующих пищевых цепей

ЯСТРЕБ
ЛЯГУШКА
ЗМЕЕЯД
ВОРОБЕЙ
МЫШЬ
КОРОЕД
ПАУК

1. Из предложенного списка живых организмов составить трофическую сеть:

2. трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

3. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой цепи (задание 1). Биомасса растений составляет 40 тонн.

4. Вывод: что отражают правила экологических пирамид?

1. Пшеница → мышь → змея → сапрофитные бактерии

Водоросль → рыбы → чайка → бактерии

2. Трава (продуцент) – кузнечик (консумент I порядка) – птицы (консумент II порядка) – бактерии.

Трава (продуценты) - лось (консумент I порядка) - волк (консумент II порядка) – бактерии.

Вывод: Цепь питания – ряд последовательно питающихся друг другом организмов. Цепи питания начинаются с автотрофов – зеленых растений.

3. нектар цветка → муха → паук → синица → ястреб

древесина → короед → дятел

трава → кузнечик → лягушка → уж → змееяд

листья →мышь → кукушка

семена → воробей → гадюка →аист

4. Из предложенного списка живых организмов составить трофическую сеть:

трава→кузнечик→лягушка→уж→бактерии гниения

кустарник→заяц→волк→муха→бактерии гниения

Это цепочки, сеть состоит из взаимодействия цепочек, но их текстом не ука-зать ну примерно так, главное, что цепь начинается всегда с продуцентов (расте-ний), а заканчивается всегда редуцентами.

Количество энергии всегда переходит по правилам 10 % на каждый следую-щий уровень переходит лишь 10 % всей энергии.

Трофическая (пищевая) цепь – последовательность видов организмов, отражающая движение в экосистеме органических веществ и заключенной в них биохимической энергии в процессе питания организмов. Термин происходит от греч.трофе – питание, пища.

Вывод: Следовательно, первая цепь питания – пастбищная, т.к. начинается с продуцентов, вторая – детритная, т.к. начинается с мертвой органики.

Все компоненты пищевых цепей распределяются на трофические уровни. Трофический уровень – это звено в цепи питания.

Колос, растения семейства злаки, однодольные.

Пищевая цепь - это сложная структура звеньев, в которой каждое из них взаимосвязано с соседним или же каким-либо другим звеном. Этими составляющими цепочки являются различные группы организмов флоры и фауны.

В природе пищевая цепь - это способ движения вещества и энергии в среде. Все это необходимо для развития и "строительства" экосистем. Трофическими уровнями называется сообщество организмов, которое располагается на определенном уровне.

Биотический круговорот

Пищевая цепь является биотическим круговоротом, который объединяет живые организмы и компоненты неживой природы. Данное явление также называется биогеоценозом и включает в себя три группы: 1. Продуценты. Группа состоит из организмов, которые производят пищевые вещества для других существ в результате фотосинтеза и хемосинтеза. Продуктом данных процессов являются первичные органические вещества. Традиционно, продуценты являются первыми в пищевой цепи. 2. Консументы. Пищевая цепь располагает данную группу над продуцентами, поскольку они потребляют те питательные вещества, которые произвели продуценты. В данную группу входят различные гетеротрофные организмы, к примеру, животные, съедающие растения. Различают несколько подвидов консументов: первичные и вторичные. В разряду первичных потребителей можно отнести травоядных животных, а ко вторичным - плотоядных, которые поедают описанных ранее травоядных. 3. Редуценты. Сюда относятся организмы, которые разрушают все предыдущие уровни. Наглядным примером может стать случай, когда беспозвоночные и бактерии разлагают остатки растений или мертвые организмы. Таким образом, пищевая цепь завершается, но круговорот веществ в природе продолжается, поскольку в результате данных превращений образуются минеральные и другие полезные вещества. В дальнейшем образованные компоненты используются продуцентами для образования первичной органики. Пищевая цепьсложная структура, поэтому вторичные консументы запросто могут стать пищей для других хищников, которых причисляют к третичным консументам.

Классификация

таким образом, принимает непосредственное участие в круговороте веществ в природе. Различают два типа цепей: детритные и пастбищные. Как видно из названий, первая группа наиболее часто встречается в лесных массивах, а вторая - на открытых пространствах: поле, луг, пастбище.

Такая цепь имеет более сложную структуру связей, там даже возможно появление хищников четвертого порядка.

Пирамиды

одна или несколько, существующие в конкретной среде обитания, образуют пути и направления движения веществ и энергии. Все это, то есть организмы и их места обитания, образуют функциональную систему, которая носит название экосистемы (экологической системы). Трофические связи достаточно редко бывают прямолинейными, обычно они имеют вид сложной и запутанной сети, в которых каждый компонент взаимосвязан с остальными. Переплетение пищевых цепей образует пищевые сети, которые в основном служат для построения и рассчетов экологических пирамид. В основе каждой пирамиды находится уровень продуцентов, наверх которого настраиваются все последующие уровни. Различают пирамиду чисел, энергии и биомассы.