История открытия электромагнитных волн. Шкала электромагнитных волн

Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте.

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а от 30 кГц до 300 ГГц.

Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.

2. . Длина волны лежит в пределах 1мм — 780нм, а может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.

3. Видимый свет. Длина 400 — 760/780нм. Соответственно колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.

4. . Длина волны меньше, чем в инфракрасного излучения.

Может доходить до 10 нм. таких волн очень большая – порядка 3х10^16 Гц.

5. Рентгеновские лучи . волны 6х10^19 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности.

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

Усталость;

Головную боль;

Тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека:

Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

Как уже было отмечено выше, существование электромагнитных волн было теоретически предсказано великим английским физиком Дж.Максвеллом в 1864 году. Он проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.: всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Высказал гипотезу о существовании и обратного процесса: изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле. Максвелл впервые описывал динамику новой формы материи - электромагнитного поля, и вывел систему уравнений (уравнений Максвелла), связывающую характеристики электромагнитного поля с его источниками - электрическими зарядами и токами. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Рис.2 а, б иллюстрируют взаимное превращение электрического и магнитного полей.

Рисунок 2 - Взаимное превращение электрического и магнитного полей: а) Закон электромагнитной индукции в трактовке Максвелла; б) Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

Деление электромагнитного поля на электрическое и магнитное зависит от выбора системы отсчета. Действительно, вокруг зарядов, покоящихся в одной системе отсчета, существует только электрическое поле; однако эти же заряды будут двигаться относительно другой системы отсчета и порождать в этой системе отсчета, кроме электрического, еще и магнитное поле. Таким образом, теория Максвелла связала воедино электрические и магнитные явления.

Если возбудить с помощью колеблющихся зарядов переменное электрическое или магнитное поле, то в окружающем пространстве возникает последовательность взаимных превращений электрических и магнитных полей, распространяющихся от точки к точке. Оба эти поля являются вихревыми, причем векторы и расположены во взаимно перпендикулярных плоскостях. Процесс распространения электромагнитного поля схематически показан на рис.3. Этот процесс, являющийся периодическим во времени и пространстве, представляет собой электромагнитную волну.

Рисунок 3 - Процесс распространения электромагнитного поля

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля.

Итак, из теории Максвелла вытекает ряд важных выводов - основных свойств электромагнитных волн.

Существуют электромагнитные волны, т.е. распространяющееся в пространстве и во времени электромагнитное поле.

В природе электрические и магнитные явления выступают как две стороны единого процесса.

Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн, т.е.

  • - всякое изменение магнитного поля создает в окружающем пространстве вихревое электрическое поле (рис.2а).
  • - всякое изменение электрического поля возбуждает в окружающем пространстве вихревое магнитное поле, линии индукции которого расположены в плоскости, перпендикулярной линиям напряженности переменного электрического поля, и охватывают их (рис.2б).

Линии индукции возникающего магнитного поля образуют с вектором «правый винт». Электромагнитные волны поперечны - векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 4).


Рисунок 4 - Поперечные электромагнитные волны

Периодические изменения электрического поля (вектора напряженности Е) порождают изменяющееся магнитное поле (вектор индукции В), которое в свою очередь порождает изменяющееся электрическое поле. Колебания векторов Е и В происходят во взаимно перпендикулярных плоскостях и перпендикулярно линии распространения волны (вектору скорости) и в любой точке совпадают по фазе. Силовые лини электрического и магнитного полей в электромагнитной волне являются замкнутыми. Такие поля называют вихревыми.

Электромагнитные волны распространяются в веществе с конечной скоростью, и это ещё раз подтвердило справедливость теории близкодействия.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.

Скорость электромагнитных волн в вакууме с=300000 км/с. Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.

Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 4), ориентированную перпендикулярно направлению распространения волны, то за малое время Дt через площадку протечет энергия ДWэм, равная

ДWэм = (wэ + wм)хSДt.

При переходе из одной среды в другую частота волны не изменяется.

Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа.

Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены выдающимся физиком Московского университета П.Н. Лебедевым в 1900 г. Обнаружение столь малого эффекта потребовало от него незаурядной изобретательности и мастерства в постановке и проведении эксперимента. В 1900 г. ему удалось измерить световое давление на твердые тела, а в 1910 г. - на газы. Основную часть прибора П.И. Лебедева для измерения давления света составляли лёгкие диски диаметром 5 мм, подвешиваемые на упругой нити (рис. 5) внутри откачанного сосуда.

Рисунок 5 - Эксперимент П.И. Лебедева

Диски изготавливались из различных металлов, и их можно было заменять при проведении экспериментов. На диски направлялся свет от сильной электрической дуги. В результате воздействия света на диски нить закручивалась, и диски отклонялись. Результаты опытов П.И. Лебедева полностью согласовывались с электромагнитной теорией Максвелла и имели огромное значение для ее утверждения.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.

Так как давление световой волны очень мало, то оно не играет существенной роли в явлениях, с которыми мы сталкиваемся в обыденной жизни. Но в противоположных по масштабам космических и микроскопических системах роль этого эффекта резко возрастает. Так, гравитационное притяжение внешних слоев вещества каждой звезды к центру уравновешивается силой, значительный вклад в которую вносит давление света, идущего из глубины звезды наружу. В микромире давление света проявляется, например, в явлении световой отдачи атома. Ее испытывает возбужденный атом при излучении им света.

Световое давление играет значительную роль в астрофизических явлениях, в частности, в образовании кометных хвостов, звезд и т.д. Световое давление достигает значительной величины в местах фокусировки излучения мощных квантовых генераторов света (лазеров). Так, давление сфокусированного лазерного излучения на поверхность тонкой металлической пластинки может привести к её пробою, то есть к появлению отверстия в пластинке. Таким образом, электромагнитное поле обладает всеми признаками материальных тел - энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

Излучение электромагнитных волн, подвергаясь смене частоты колебания зарядов, меняет длину волны и приобретает различные свойства. Человек буквально окружен устройствами, которым присуще излучение и прием электромагнитных волн. Это сотовые телефоны, радио, телевещание, рентген-аппараты в медучреждениях и т.д. Даже тело человека обладает электромагнитным полем и, что очень интересно, каждый орган имеет свою частоту излучения. Распространяющиеся излучаемые заряженные частицы воздействуют друг на друга, провоцируя смену частоты колебания и выработку энергии, что может быть использовано как в созидательных, так и в разрушительных целях.

Электромагнитное излучение. Общая информация

Электромагнитное излучение представляет собой изменение состояния и интенсивности распространения электромагнитных колебаний, вызванных взаимодействием электрического и магнитного полей.

Глубоким изучением свойств характерных для электромагнитных излучений занимаются:

  • электродинамика;
  • оптика;
  • радиофизика.

Излучение электромагнитных волн создается и распространяется благодаря колебанию зарядов, в процессе чего выделяется энергия. Они обладают характером распространения, подобным механическим волнам. Движению зарядов присуще ускорение – с течением времени их скорость меняется, что является основополагающим условием для излучения электромагнитных волн. Мощность волны напрямую связана с силой ускорения и прямо пропорциональна ей.

Показатели, определяющие характерные особенности электромагнитного излучения:

  • частота колебания заряженных частиц;
  • длина волны излучаемого потока;
  • поляризация.

Электрическое поле, которое находится наиболее близко к заряду, подверженному колебаниям, претерпевает изменения. Промежуток времени, затраченный на эти изменения, будет равен промежутку времени колебаний заряда. Движение заряда можно сравнить с колебаниями тела, подвешенного на пружине, разница лишь в частоте перемещения.

К понятию «излучение» относятся электромагнитные поля, которые устремляются как можно дальше от источника возникновения и теряют свою интенсивность с увеличением расстояния, образуя волну.

Распространение электромагнитных волн

Труды Максвелла и открытые им законы электромагнетизма позволяют извлечь значительно больше информации, нежели могут представить факты, на основе которых проводится исследование. Например, одним из выводов на основе законов электромагнетизма выступает заключение, что электромагнитное взаимодействие имеет конечную скорость распространения.

Если следовать теории дальнодействия, то получаем, что сила, которая оказывает воздействие на электрический заряд, находящийся в неподвижном состоянии, изменяет свои показатели при смене местоположения соседнего заряда. Согласно этой теории заряд буквально «ощущает» сквозь вакуум присутствие себе подобного и мгновенно перенимает действие.

Сформировавшиеся понятия о близкодействии имеют совершенно другой взгляд на происходящее. Заряд, перемещаясь, обладает переменным электрическим полем, которое, в свою очередь, способствует возникновению переменного магнитного поля в близлежащем пространстве. После чего переменное магнитное поле провоцирует возникновение электрического и так цепочкой далее.

Таким образом происходит «возмущение» электромагнитного поля, вызванное сменой места заряда в пространстве. Оно распространяется и, как результат, воздействует на существующее поле, изменяя его. Добравшись до соседнего заряда, «возмущение» вносит изменения в показатели силы, действующей на него. Происходит это спустя некоторое время после смещения первого заряда.

Вопросом принципа распространения электромагнитных волн увлеченно занимался Максвелл. Затраченное время и силы в итоге увенчались успехом. Он доказал наличие конечной скорости этого процесса и привел тому математическое обоснование.

Реальность существования электромагнитного поля подтверждается наличием конечной скорости «возмущения» и соответствует показателям скорости света в пространстве, лишенном атомов (вакууме).

Шкала электромагнитных излучений

Вселенная наполнена электромагнитными полями с разным диапазоном излучения и кардинально различающейся длиной волны, которая может варьироваться от нескольких десятков километров до ничтожной доли сантиметра. Они позволяют получать информацию об объектах, находящихся на огромных расстояниях от Земли.

На основе утверждения Джеймса Максвелла о разности длины электромагнитных волн была разработана специальная шкала, которая содержит классификацию диапазонов существующих частот и длин излучений, образующих переменное магнитное поле в пространстве.

В своих наработках Г. Герц и П. Н. Лебедев экспериментально доказали верность утверждений Максвелла и обосновали тот факт, что излучение света – это волны электромагнитного поля, характеризующиеся небольшой длиной, которые образуются путем естественной вибрации атомов и молекул.

Между диапазонами не наблюдается резких переходов, но они также не имеют четких границ. Какой бы ни была частота излучения, все пункты шкалы описывают электромагнитные волны, которые появляются благодаря изменению положения заряженных частиц. На свойства зарядов оказывает влияние длина волны. При изменении ее показателей изменяется отражающая, проникающая способности, уровень видимости и т.д.

Характерные особенности электромагнитных волн дают им возможность свободно распространяться как в вакууме, так и в пространстве, заполненном веществом. Нужно отметить, что, перемещаясь в пространстве, излучение меняет свое поведение. В пустоте скорость распространения излучения не меняется, потому частота колебаний жестко взаимосвязана с длиной волны.

Электромагнитные волны разных диапазонов и их свойства

К электромагнитным волнам относятся:

  • Низкочастотные волны. Характеризуются частотой колебаний не более 100 КГц. Данный диапазон применяется для работы электрических устройств и двигателей, например, микрофона или громкоговорителя, телефонных сетей, а также в области радиовещания, киноиндустрии и др. Волны низкочастотного диапазона отличаются от тех, что обладают более высокой частотой колебаний, фактическим падением скорости распространения пропорционально квадратному корню их частоты. Весомый вклад в открытие и изучение низкочастотных волн сделали Лодж и Тесла.
  • Радиоволны. Открытие Герцем радиоволн в 1886 г. подарило миру возможность передавать информацию, не используя провода. Длина радиоволны влияет на характер ее распространения. Они, подобно частотам звуковых волн, возникают благодаря переменному току (в процессе осуществления радиосвязи переменный ток протекает в приемник – антенну). Высокочастотная радиоволна способствует значительному испусканию радиоволн в окружающее пространство, что дает уникальную возможность передавать информацию на большие расстояния (радио, телевидение). Подобного рода сверхвысокочастотные излучения используются для осуществления связи в условиях космоса, а также в быту. Например, микроволновая СВЧ-печь, излучающая радиоволны, стала хорошей помощницей для хозяек.
  • Инфракрасное излучение (еще называют «тепловое»). Согласно классификации шкалы электромагнитных излучений, область распространения инфракрасных излучений находится после радиоволн и перед видимым светом. Инфракрасные волны излучают все тела, испускающие тепло. Примерами источников таких излучений выступают печи, батареи, используемые для отопления, основанные на теплоотдаче воды, лампы накаливания. На сегодняшний день разработаны специальные устройства, которые позволяют увидеть в полной темноте предметы, от которых исходит тепло. Такими природными датчиками распознавания тепла в области глаз обладают змеи. Это позволяет им отслеживать добычу и охотиться ночью. Человек применяет инфракрасные излучения, например, для обогрева зданий, для сушки овощей, а также древесины, в области военного дела (например, приборы ночного видения или же тепловизоры), для беспроводного управления аудиоцентром или телевизором и другими устройствами с помощью пульта.
  • Видимый свет. Обладает световым спектром от красного до фиолетового и воспринимается глазом человека, что является главной отличительной чертой. Цвет, излучаемый разной длиной волны, оказывает электрохимическое воздействие на систему визуального восприятия человека, но не входит в раздел свойств электромагнитных волн данного диапазона.
  • Ультрафиолетовое излучение. Не фиксируется глазом человека и обладает длиной волны по значению меньше, нежели у фиолетового света. В небольших дозировках лучи ультрафиолета вызывают лечебный эффект, способствуют выработке витамина Д, осуществляют бактерицидное воздействие и положительно влияют на центральную нервную систему. Преизбыточная насыщенность окружающей среды ультрафиолетовыми лучами приводит к повреждению кожных покровов и разрушению сетчатки глаза, потому офтальмологи рекомендуют использование солнечных очков в летние месяцы. Ультрафиолетовое излучение применяют в медицине (лучи ультрафиолета используются для кварцевых ламп), для проверки подлинности денежных купюр, в развлекательных целях на дискотеках (подобное освещение заставляет светиться светлые материалы), а также для определения годности продуктов питания.
  • Рентгеновское излучение. Такие волны не заметны для человеческого глаза. Они обладают удивительным свойством проникать сквозь слои вещества, избегая сильного поглощения, что недоступно лучам видимого света. Излучение способствует возникновению свечения некоторых разновидностей кристаллов и оказывает воздействие на фотографическую пленку. Используется в области медицины для диагностирования заболеваний внутренних органов и для лечения определенного списка болезней, для проверки внутреннего устройства изделий на предмет наличия дефектов, а также сварных швов в технике.
  • Гамма-излучение. Наиболее коротковолновое электромагнитное излучение, испускающее ядра атома. Уменьшения длины волны приводит к изменениям качественных показателей. Гамма-излучение имеет проникающую способность, во много раз превышающую рентгеновские лучи. Может проходить сквозь бетонную стену толщиной один метр и даже сквозь свинцовые преграды толщиной в несколько сантиметров. В ходе распада веществ или единения происходит выброс составных элементов атома, что получило название радиация. Такие волны относят к списку радиоактивных излучений. При взрыве ядерной боеголовки на короткое время образуется электромагнитное поле, которое является продуктом реакции между лучами гамма-спектра и нейтронами. Оно же выступает основным элементом ядерного оружия, оказывающим поражающее воздействие, полностью блокирует или нарушает работу радиоэлектроники, проводной связи и систем, обеспечивающих электроснабжение. Также при взрыве ядерного оружия высвобождается много энергии.

Выводы

Волны электромагнитного поля, обладая определенной длиной и находясь в определенном диапазоне колебания, могут оказывать как положительные влияние на организм человека и его уровень адаптации к окружающей среде, благодаря разработке вспомогательных электрических приборов, так и отрицательное, и даже разрушающее воздействие на здоровье и среду обитания человека.

Глава 1

ОСНОВНЫЕ ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380...780 нм (рис. 1.1). В области видимого спектра глаз ощушает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн - провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Электромагнитные волны имеют следующие основные характеристики.

1. Длина волны lв, - кратчайшее расстояние между двумя точками в пространстве, на котором фаза гармонической электромагнитной волны меняется на 360°. Фаза - это состояние (стадия) периодического процесса (рис. 1.2).


В наземном телевизионном вешании используются метровые (MB) и дециметровые волны (ДМВ), в спутниковом - сантиметровые волны (СМ). По мере заполнения частотного диапазона СМ будет осваиваться диапазон миллиметровых волн (Ка-bаnd).

2. Период колебания волны Т- время, в течение которого происходит одно полное изменение напряженности поля, т. е. время, за которое точка радиоволны, имеющая какую-то фиксированную фазу, проходит путь, равный длине волны lв.

3. Частота колебаний электромагнитного поля F (число колебаний поля в секунду) определяется по формуле

Единицей измерения частоты является герц (Гц) - частота, при которой совершается одно колебание в секунд. В спутниковом вещании приходится иметь дело с очень высокими частотами электромагнитных колебаний измеряемых в гигагерцах.

Для спутникового непосредственного телевизионного вещания (СНТВ) по линии Космос - Земля используются диапазон C-band low и часть диапазона Кu (10,7...12,75 ГГи). Верхняя часть этих диапазонов применяется для передачи информации по линии Земля - Космос (табл. 1.1).


4. Скорость распространения волны С- скорость последовательного распространения волны от источника энергии (антенны).

Скорость распространения радиоволн в свободном пространстве (вакууме) постоянна и равна скорости света С= 300 000 км/с. Несмотря на такую высокую скорость, электромагнитная волна по линии Земля - Космос - Земля проносится за время 0,24 с. На земле радиотелевизионные передачи можно практически мгновенно принимать в любой точке. При распространении в реальном пространстве, например -в воздухе, скорость движения радиоволны зависит от свойств среды, она обычно меньше С на величину коэффициента преломления среды.

Частота электромагнитных волн F, скорость их распространения С и длина волны л связаны соотношением

lв=C/F, а так как F=1/T , то lв=С*T.

Подставляя значение скорости С= 300 000 км/с в последнюю формулу, получаем

lв(м)=3*10^8/F(м/c*1/Гц)

Для больших значений частот длину волны электромагнитного колебания можно определить по формуле lв(м)=300/F(МГц) Зная длину волны электромагнитного колебания, частоту определяют по формуле F(МГц)=300/lв(м)

5. Поляризация радиоволн. Электрическая и магнитная составляющие электромагнитного поля соответственно характеризуются векторами Е и Н, которые показывают значение напряженностей полей и их направление. Поляризацией называется ориентировка вектора электрического поля Е волны относительно поверхности земли (рис. 1.2).

Вид поляризации радиоволн определяется ориентировкой (положением) передающей антенны относительно поверхности земли. Как в наземном, так и в спутниковом телевидении применяется линейная поляризация, т. е. горизонтальная Н и вертикальная V (рис. 1.3).

Радиоволны с горизонтальным вектором электрического поля называют горизонтально поляризованными, а с вертикальным - вертикально поляризованными. Плоскость поляризации у последних волн вертикальна, а вектор Н (см. рис. 1.2) находится в горизонтальной плоскости.

Если передающая антенна установлена горизонтально над поверхностью земли, то электрические силовые линии поля также будут расположены горизонтально. В этом случае поле наведет наибольшую электродвижущую силу (ЭДС) в гори-



Рис 1.4. Круговая поляризация радиоволн:

LZ- левая; RZ- правая

зонтально расположенной приемной антенне. Следовательно, при Н поляризации радиоволн приемную антенну необходимо ориентировать горизонтально. При этом приема радиоволн на вертикально расположенную антенну теоретически не будет, так как наведенная в антенне ЭДС равна нулю. И наоборот, при вертикальном положении передающей антенны приемную антенну также необходимо расположить вертикально, что позволит получить в ней наибольшую ЭДС.

При телевизионном вещании с искусственных спутников Земли (ИСЗ) кроме линейных поляризаций широко используется круговая поляризация. Связано это, как ни странно, с теснотой в эфире, так как на орбитах находится большое количество спутников связи и ИСЗ непосредственного (прямого) телевизионного вещания.

Часто в таблицах параметров спутников дают сокращенное обозначение вида круговой поляризации - L и R. Круговую поляризацию радиоволн создает, например, коническая спираль на облучателе передающей антенны. В зависимости от направления намотки спирали круговая поляризация оказывается левой или правой (рис. 1.4).

Соответственно в облучателе наземной антенны спутникового телевидения должен быть установлен поляризатор, который реагирует на круговую поляризацию радиоволн, излучаемых передающей антенной ИСЗ.

Рассмотрим вопросы модуляции высокочастотных колебаний и их спектр при передаче с ИСЗ. Целесообразно это сделать в сравнении с наземными вещательными системами.

Разнос между несущими частотами сигналов изображения и звукового сопровождения составляет 6,5 МГц, остаток нижней боковой полосы (слева от несущей изображения) - 1,25 МГц, а ширина канала звукового сопровождения - 0,5 МГц

(рис. 1.5). С учетом этого суммарная ширина телевизионного канала принята равной 8,0 МГц (по стандартам D и К, принятым в странах СНГ).

Передающая телевизионная станция имеет в своем составе два передатчика. Один из них передает электрические сигналы изображения, а другой - звуковое сопровождение соответственно на разных несущих частотах. Изменение какого-то параметра несущего высокочастотного колебания (мощности, частоты, фазы и др.) под воздействием колебаний низкой частоты называется модуляцией. Используются два основных вида модуляции: амплитудная (AM) и частотная (ЧМ). В телевидении сигналы изображения передаются с AM, а звуковое сопровождение - с ЧМ. После модуляции электрические колебания усиливаются по мощности, затем поступают в передающую антенну и излучаются ею в пространство (эфир) в виде радиоволн.

8 наземном телевизионном вещании по ряду причин невозможно применить ЧМ для передачи сигналов изображения. На СМ места в эфире значительно больше и такая возможность существует. В результате спутниковый канал (транспондер) занимает полосу частот в 27 МГц.

Преимущества частотной модуляции сигнала поднесущей:

меньшая по сравнению с AM чувствительность к помехам и шумам, низкая чувствительность к нелинейности динамических характеристик каналов передачи сигналов, а также стабильность передачи на далекие расстояния. Данные характеристики объясняются постоянством уровня сигнала в каналах передачи, возможностью проведения частотной коррекции предыскажений, благоприятно влияющих на отношение сигнал/шум, благодаря чему ЧМ можно значительно снизить мощность передатчика при передаче информации на одно и то же расстояние. Например, в наземных вещательных системах для передачи сигналов изображения на одной и той же телевизионной станции используются передатчики в 5 раз большей мощности, чем для передачи сигналов звукового сопровождения.