Анализа нелинейных систем методы. Статистические методы идентификации нелинейных систем

Практически все системы управления, строго говоря, являются нелинейными, т.е. описываются нелинейными уравнениями. Линейные системы управления являются их линейными моделями, которые получаются путем обычной линеаризации - линеаризации, состоящей в разложении нелинейных функций в ряд Тейлора и отбрасывании нелинейных слагаемых. Однако такая линеаризация не всегда возможна. Если нелинейность допускает обычную линеаризацию, то такая нелинейность называется несущественной. В противном случае нелинейность называется существенной. Существенными нелинейностями обладают всякого рода релейные элементы. Даже в тех случаях, когда обычная линеаризация возможна, часто на конечном этапе исследования может потребоваться рассмотрение исходной нелинейной модели.

Нелинейной системой автоматического регулирования называют такую систему, которая содержит хотя бы одно звено, описываемое нелинейным уравнением.

Виды нелинейных звеньев:

    звено релейного типа;

    звено с кусочно-линейной характеристикой;

    звено с криволинейной характеристикой любого очертания;

    звено, уравнение которого содержит произведение переменных или их производных и другие их комбинации;

    нелинейное звено с запаздыванием;

    нелинейное импульсное звено;

    логическое звено;

    звенья, описываемые кусочно-линейными ДУ, в том числе с переменной структурой.

На рис. 2.1 представлены релейные характеристики разных видов:

    характеристика идеального реле (а);

    характеристика реле с зоной нечувствительности (б);

    характеристика реле с гистерезисом (в);

    характеристика реле с зоной нечувствительности и гистерезисом (г);

    характеристика квантования по уровню (д).

На рис. 2.2 представлены кусочно-линейные характеристики:

    кусочно-линейная характеристика с насыщением (а);

    кусочно-линейная характеристика с зоной нечувствительности и насыщением (б)

    кусочно-линейная характеристика с зоной нечувствительности (в);

    люфт (характеристика звена с люфтом) (г);

    диодная характеристика (д);

    кусочно-линейная характеристика с гистерезисом и насыщением (е).

Различаются статические и динамические нелинейности. Первые представляются в виде нелинейных статических характеристик, вторые – в виде нелинейных дифференциальных уравнений.

Привод регулирующего органа, каким бы он ни был (электрическим, гидравлическим или пневматическим) всегда имеет, во-первых, зону нечувствительности в начале координат; во-вторых, зону насыщения по краям. Кроме того, может иметь место еще гистерезис. Также существуют приводы с постоянной скоростью, относящиеся к звеньям релейного типа.

Зона нечувствительности выражается тем, что двигатель имеет определенный минимальный ток трогания, до достижения которого двигатель будет неподвижен.

ГИСТЕРЕЗИС (от греч. hysteresis - отставание, запаздывание), явление, которое состоит в том, что физ. величина, характеризующая состояние тела (напр., намагниченность), неоднозначно зависит от физ. величины, характеризующей внешние условия (напр., магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т. к. для изменения состояния тела всегда требуется определённое время (время релаксации) и реакция тела отстаёт от вызывающих её причин.

Нелинейные системы по сравнению с линейными обладают рядом принципиальных особенностей. В частности, такими особенностями является следующее:

Не выполняется принцип суперпозиции, и исследование нелинейной системы при нескольких воздействиях нельзя сводить к исследованию при одном воздействии;

Устойчивость и характер переходного процесса зависят от величины начального отклонения от положения равновесия;

При фиксированных внешних воздействиях возможны несколько (а иногда и бесконечное множество) положений равновесия;

Возникают свободные установившиеся процессы, которые в линейных системах невозможны (например, автоколебания).

Универсальных аналитических (математических) методов исследования нелинейных систем нет. В процессе развития теории автоматического управления были разработаны различные математические методы анализа и синтеза нелинейных систем, каждый из которых применим для определенного класса систем и задач. Наиболее широко используемыми методами исследования нелинейных систем являются:

Метод фазовой плоскости;

Метод функций Ляпунова;

Метод гармонической линеаризации (метод гармонического баланса) ;

Методы исследования абсолютной устойчивости.

Любое исследование более или менее сложных нелинейных систем, как привило, заканчивается математическим моделированием. И в этом отношении математическое моделирование является одним из универсальных (неаналитических) методов исследования.

Фазовая плоскость

Если уравнения системы управления представлены в нормальной форме, то вектор состояния системы однозначно определяет ее состояние. Каждому состоянию системы в пространстве состояний соответствует точка. Точка, соответствующая текущему состоянию системы, называется изображающей точкой. При изменении состояния изображающая точка описывает траекторию. Эта траектория называется фазовой траекторией. Совокупность фазовых траекторий, соответствующая всевозможным начальным условиям, называется фазовым портретом.

Наглядно фазовую траекторию и фазовый портрет можно представить в случае двухмерного фазового пространства. Двухмерное фазовое пространство называется фазовой плоскостью.

Фазовая плоскость - это координатная плоскость, в которой по осям координат откладываются две переменные (фазовые координаты), однозначно определяющие состояние системы второго порядка.

Метод анализа и синтеза системы управления, основанный на построении фазового портрета, называют методом фазовой плоскости.

По фазовому портрету можно судить о характере переходных процессов. В частности, по фазовой траектории можно построить без расчетов качественно временную характеристику - кривую зависимости х от времени, и, наоборот, по временной характеристике можно качественно построить фазовую траекторию.

В качестве примера сначала по фазовой траектории построим временную характеристику, а затем по временной характеристике - фазовую траекторию. Пусть задана фазовая траектория (рис. 2.4, а).

Отметив на ней характерные точки (начальную точку, точки пересечения с осями координат), нанесем соответствующие им точки на временной плоскости и соединим их плавной кривой (рис. 2.4, б).

Пусть теперь задана временная характеристика (рис. 2.5, а). Отметив на ней характерные точки (начальную точку, точки экстремума и точки пересечения с временной осью), нанесем соответствующие им точки на фазовую плоскость и соединим их плавной кривой

(рис. 2.5,6).

Фазовые портреты нелинейных систем могут содержать тип особой кривой - изолированные замкнутые траектории. Эти кривые называются предельными циклами . Если изнутри и снаружи фазовые траектории сходятся к предельному циклу (рис. 2.8, а),

то такой предельный цикл называется устойчивым предельным циклом. Устойчивому предельному циклу соответствует асимптотически орбитально-устойчивое периодическое движение (автоколебания).

Если фазовые траектории изнутри и снаружи предельного цикла удаляются от него (рис. 2.8,6), такой предельный цикл называется неустойчивым предельным циклом. Периодический процесс, соответствующий неустойчивому предельному циклу, нельзя наблюдать.

Если движение начинается внутри такого предельного цикла, то процесс сходится к положению равновесия. Если движение начинается вне такого предельного цикла, то процесс расходится. Неустойчивый предельный цикл служит границей области притяжения, или границей устойчивости положения равновесия (начала координат).

Возможны два предельных цикла (рис. 2.8, в, г). Внутренний пре-

предельный цикл на рис. 2.8, в устойчив, и ему соответствуют автоколебания, а наружный предельный цикл неустойчив и является границей области автоколебаний: автоколебания возникают при любых начальных отклонениях, не выходящих за наружный предельный цикл.

Наружный предельный цикл на рис. 2.8, г является устойчивым и соответствует автоколебаниям, а внутренний предельный цикл является неустойчивым и является границей области притяжения положения равновесия. В системе с таким фазовым портретом автоколебания возникают при достаточно большом отклонении системы от положения равновесия - отклонении, выходящем за пределы внутреннего предельного цикла. Если движение системы начинается внутри неустойчивого предельного цикла, то она приближается к положению равновесия.

Метод гармонической линеаризации

Метод гармонической линеаризации, или метод гармонического баланса, первоначально был разработан для исследования периодического режима. Однако в дальнейшем он стал использоваться также для анализа устойчивости и синтеза нелинейных систем.

Основная идея метода состоит в следующем. Управляемые системы (объекты), как правило, обладают свойством фильтра низких частот: при возникновении периодических режимов они не пропускают или пропускают с большим ослаблением вторые и более высокие гармоники. И суть метода гармонической линеаризации состоит в описании нелинейного звена линейным уравнением, которое получается при пренебрежении (отбрасывании) указанными гармониками в разложении нелинейной функции в ряд Фурье.

Метод гармонической линеаризации является приближенным методом. Однако его достоинством является то, что он применим для систем любого порядка, в отличие от метода фазовой плоскости, который может быть эффективно применен только к системам 2-го порядка.

Метод Гольдфарба (метод исследования симметричных автоколебаний)

Метод функций Ляпунова

Метод исследований, основанный на построении функции Ляпунова, включая прямой метод Ляпунова, стали называть методом функций Ляпунова.

Метод исследования абсолютной устойчивости

Впервые задача об абсолютной устойчивости была рассмотрена А. И. Лурье, и ее иногда называют задачей Лурье. Им был разработан метод решения этой задачи, основанный на построении функции Ляпунова. В 1961г. румынский ученый В.М. Попов опубликовал работу, в которой изложил частотный метод решения этой проблемы. Это повлекло за собой появление большого потока работ в этом направлении.

Для заданий:

Связь переходного процесса и фазового портрета:

(Бесекерский-Попов стр 595 много всего)

Критерий устойчивости Попова В.М.

(румынский ученый)

Это частотный метод исследования устойчивости НЛ САУ с однозначной нелинейностью, удовлетворяющей условию

Рассматривается устойчивость положения равновесия


Достаточные условия абсолютной устойчивости таких систем сформулированы Поповым В.М.

1.Вводится передаточная функция

Предполагается, что
соответствует асимптотически устойчивой системе (проверяется по любому из критериев устойчивости).

2.Находится частотная характеристика
.

3.Строится видоизмененная частотная характеристика
,

которая определяется соотношением

Re
=Re
,

Im
= .

4.На комплексной плоскости строится
.

Критерий Попова:

Если через точку
на действительной оси можно провести прямую линию так, чтобы видоизмененная АФЧХ
лежала по одну сторону от этой прямой, то замкнутая НЛ САУбудет абсолютно устойчива.

Пример. Исследовать абсолютную устойчивость НЛ САУ со структурной схемой рис.1, если

Так как все в характеристическом уравнении 2-го порядка больше нуля, то
- асимптотически устойчива и, следовательно, условие (1) критерия устойчивости Попова выполняется.

Re
=Re
=

Im
=Im
=

Строим АФЧХ
.

Асимптотическая устойчивость для специального вида

нелинейных характеристик

1.Неоднозначная нелинейная характеристика

Состояние покоя будет абсолютно устойчивым, если

1.
соответствует асимптотически устойчивой системе.

2.

2.Система с релейной характеристикой

r =0 . Это частный случай рассмотренной выше характеристики.

Достаточное условие абсолютной устойчивости – вместо условия (2)

3.Нелинейность типа реле

1.
- асимптотически устойчива.

2.Im

Абсолютная устойчивость процессов

Рассмотрим теперь устойчивость не систем стабилизации (номинальный режим – состояние покоя), а случай, когда номинальный режим характеризуется входным сигналом
и выходным сигналом
, которые являютсяограниченными непрерывными функциями времени.

Будем предполагать, что нелинейный элемент имеет вид
, где
- непрерывная однозначная функция, удовлетворяющая условию

т.е. ограничена скорость изменения нелинейной характеристики. Это достаточно жесткое условие.

В этом случае для обеспечения абсолютной устойчивости ограниченного процесса
,
достаточно, чтобы выполнялись условия6

1.
- было асимптотически устойчива.

2.
.

В частном случае, когда r =0

или

Теория, связанная с развитием идей Попова еще не закончена, здесь возможны новые более сильные результаты. Сводка таких результатов на сегодняшний день имеется в книге Наумова «Нелинейные системы автоматического управления».

Приближенные методы исследования нелинейных сау

Метод гармонического баланса

При исследовании НЛ САУ иногда можно наблюдать появление периодических изменений выходной величины у(t ) даже в тех случаях, когда
Если при изучении САУ ограничитьсялинейной моделью с постоянными коэффициентами, то указанное явление (собственные колебания) может иметь место только при наличии в характеристическом уравнении чисто мнимых корней
.

Однако при таком объяснении малое изменение параметров системы «сдвинет» корень с мнимой оси налево или направо и собственные колебания либо затухают либо раскачиваются. На практике же в нелинейных системах периодические колебания выходного сигнала сохраняются при малых изменениях параметров системы.

Такого рода незатухающие колебания объясняются нелинейным характером системы. Они называются автоколебаниями.

Рассмотрим метод гармонического баланса, который позволяет по взаимному протеканию АФЧХ линейной части и и характеристики нелинейного элемента определить наличие или отсутствия автоколебаний.

Рассмотрим одноконтурную систему, в которой выделяется нелинейный элемент

(1)

и линейная часть с передаточной функцией
.

Предполагается:

1.
соответствует устойчивой системе,

2. нелинейная характеристика
- нечетная симметричная, т.е.

,

3.входной сигнал
, т.е. это система стабилизации.

Будем искать выходной сигнал у(t ) в виде

, (2)

где - амплитуда автоколебаний,

- частота автоколебаний.

и надо определить.

Гипотеза о синусоидальном характере у(t ) выглядит произвольной. Однако далее будут приведены условия, при выполнении которых эта гипотеза становится естественной.

Поскольку
,(3)

Пропустим сигнал
последовательно через нелинейный элемент и линейную часть и найдем уравнения, их которых можно будет определить амплитудуи частотуавтоколебаний в НЛ САУ.

Прохождение
через линейный элемент

Так как
-
периодическая функция, то сигнал
на выходе нелинейного элемента также будет периодической функцией, но отличной от синусоиды.

Спектр
Спектр

Как известно, любая периодическая функция может быть представлена рядом Фурье:

(4)

Мы предполагаем, что свободный член в формуле (4) равен нулю. Это будет иметь место, например, когда характеристика нелинейного элемента удовлетворяет условию


, т.е это нечетная функция.

Здесь коэффициенты Фурье иопределяются:

,

(5)

Преобразуем (4) , умножив и поделив каждый член в правой части на
(6)


.

Напомним, что


(8)

Таким образом при прохождении сигала
через нелинейный элемент, на выходе нелинейного элемента сигал
содержит множество гармоник, кратных. (см. рисунок выше).

Прохождение сигнала
через линейную часть

Из теории линейных систем мы знаем, что если на вход линейного звена с передаточной функцией
, соответствующей устойчивой системе, подать гармонический сигналто в установившемся режиме на выходе этого звена будет сигнал.

Здесь
- модуль частотной характеристики
в точке,

аргумент
.

Используя эти соотношения, мы можем выписать выражения для
, пропуская по отдельности через линейную часть все составляющие ряда (8) и суммируя затем полученные выражения для

В силу линейности системы такая процедура законна.

Получим, полагая
:

Полученное выражение (9) для
имеет достаточно сложную структуру. Его можно существенно упростить, используягипотезу фильтра.

Изучая частотные характеристики типовых элементарных звеньев, мы видели, что их АЧХ стремятся к нулю при

Гипотеза фильтра состоит в том, что АЧХ в правой части (9) убывает с ростом частоты настолько быстро, что в (9) можно учитывать лишь первый член, соответствующий к=1 , и считать остальные члены пренебрежимо малыми. Другими словами – гипотеза фильтра – это гипотеза о том, что линейная часть САУ практически не пропускает высокочастотные колебания. Поэтому формула (9) (и в этом состоит приближенность метода) упрощается следующим образом:

Таким образом, при замыкании системы в предположении гипотезы фильтра мы получим баланс гармоник (отсюда и название метода – метод гармонического баланса)

Рассмотрим как с помощью метода гармонического баланса определить амплитуду а и частоту автоколебаний.

Введем понятие эквивалентной передаточной функции нелинейного элемента:

(11)

Если
(а это имеет место при однозначных симметричных нелинейных характеристиках), то

(12)

Характеристическое уравнение замкнутой САУ (рис.1) имеет вид:

или частотная характеристика

(13)

(14)

Представим

Тогда уравнение (14) перепишется:

=
(17)

Равенство (14) или (17) является основой графо-аналитического метода определения параметров автоколебаний а и .

На комплексной плоскости строится АФЧХ линейной части

и характеристика нелинейного элемента

Если кривые пересекаются, то в САУ существуют автоколебания.

Частота автоколебаний в точке пересечения кривых по
, а амплитуда- по
.

Рассмотрим подробнее выделенный участок

Мы знаем амплитуду и частоту точек, ближайших к точке пересечения кривых. Амплитуду и частоту в точке пересечения можно определить, например, методом деления отрезка пополам.

Метод гармонической линеаризации

Это очень эффективный приближенный метод определения периодических колебаний в НЛ САУ.

Для применения метода гармонической линеаризации нелинейности необходимо выполнение требования – линейная часть должна обладать свойствами фильтра, т.е. она не должна пропускать высокие частоты.

На практике это требование обычно выполняется.

Пусть имеется нелинейный элемент

(1)

Пусть
(2)

Тогда
(3)

Разложим (1) в ряд Фурье:

Напомним, нелинейная функция F (x ) , разложенная в ряд Фурье, имеет вид:

,

,
,

Тогда ряд Фурье для нашей нелинейности будет иметь вид:


++высшие гармоники (4)

Положим постоянную составляющую

Из уравнения (2):

Из уравнения (3):

Тогда уравнение (4) можно переписать:

,


В уравнении (5) пренебрегаем высокими частотами и в этом приближенность метода.

Таким образом, нелинейный элемент при
заменяется линеаризованным выражением (5), которое при выполнении гипотезы фильтра линейной части принимает вид:

(6)

Эта процедура называется гармонической линеаризацией.

Коэффициенты
и
припостоянных а и . В динамическом же режиме, когда изменяютсяа и , коэффициенты
и
будут изменяться. В этом отличие гармонической линеаризации от обычной. (При обычной линеаризации коэффициент линеаризованного уравненияК зависит от точки линеаризации). Зависимость коэффициентов линеаризации от а и позволяет применить к НЛ САУ (6) методы исследования линейных систем и анализировать свойства НЛ САУ, которые не могут быть обнаружены при обычной линеаризации.

Коэффициенты гармонической линеаризации

некоторых типовых нелинейностей

    Релейная характеристика


2.Релейная характеристика с зоной нечувствительности

,
Амплитуда колебаний

3.Релейная характеристика с петлей гистерезиса

,
,

4.Релейная характеристика с зоной нечувствительности и петлей гистерезиса

,


Теперь рассмотрим замкнутую систему.

,

Можно ввести понятие передаточной функции нелинейного элемента

,

.

Тогда характеристическое уравнение замкнутой САУ:

,

или

Когда в замкнутой системе возникают собственные незатухающие колебания постоянной амплитуды и частоты, то коэффициенты гармонической линеаризации становятся постоянными и САУ становится линейной. А в линейной системе наличие периодических незатухающих колебаний говорит о наличии у нее чисто мнимых корней.

Таким образом для определения периодических решений надо в характеристическое уравнение подставить
. Здесь- текущая частота, а- частота автоколебаний.

В этом уравнении неизвестными являются и.

Выделим в этом уравнении действительную и мнимую части.

Введем для частоты и амплитуды искомого периодического решения обозначения
,
.

Получим два уравнения с двумя неизвестными.

Решив эти уравнения, найдем и- амплитуду и частоту периодических решений в НЛ САУ.

С помощью этих уравнений можно определить не только и, но и построить зависимостьи, например, от коэффициента усиления САУК .

Тогда, считая К переменным, запишем:

Задаваясь К , находим и, т.е
и

Можно выбрать К так, чтобы

1. было бы мало,

2. было бы неопасно для САУ,

3.автоколебаний не было бы.

С помощью этих же уравнений можно на плоскости двух параметров (например, Т и К ) построить линии равных значений амплитуды и частоты автоколебаний. Для этого уравнения переписывают:

Задаваясь числовыми значениями , получим
и

По этим графикам можно выбирать Т и К.

Определение устойчивости решений в нелинейных САУ

Автоколебаниям в НЛ САУ должны соответствовать устойчивые периодические решения. Поэтому после нахождения амплитуды и частотыпериодических решений необходимо исследовать их на устойчивость.

Рассмотрим приближенный метод исследования устойчивости периодических решений в НЛ САУ с помощью годографа Михайлова.

Пусть НЛ САУ

,
.
- получена с помощью метода гармонической линеаризации.

Характеристическое уравнение замкнутой системы

Запишем уравнение характеристической кривой (годографа Михайлова), для чего подставим в него
.

- текущее значение частоты вдоль годографа Михайлова,

- частота гармонической линеаризации (автоколебаний).

Тогда для любых заданных постоянных икривая Михайлова будет иметь такой же вид, как и для обыкновенных линейных систем.

При периодических решениях, соответствующих и, годограф Михайлова будет проходить через начало координат (т.к. система находится на границе устойчивости).

Для определения устойчивости периодических решений дадим приращение

Если при
кривая Михайлова займет положение 1, а при

- положение 2, то периодическое решение устойчиво.

Если при
кривая займет положение 2, а при
- положение 1, то периодическое решение неустойчиво.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Новосибирский государственный технический университет

Кафедра электропривода и автоматизации промышленных установок

КУРСОВАЯРАБОТА

по дисциплине «Теория автоматического управления»

Анализ нелинейных систем автоматического управления

Студент: Тишининов Ю.С.

Группа Эма-71

Руководитель курсовой работы

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ:

1. Исследовать САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом фазовой плоскости.

1.1 Проверить результаты расчетов по пункту 1 с помощью структурного моделирования.

1.2 Исследовать влияние входного воздействия и параметров нелинейности на динамику системы.

2. Исследовать САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом гармонической линеаризации.

2.1 Проверить результаты расчетов по пункту 2 с помощью структурного моделирования.

2.2 Исследовать влияние входного воздействия и параметров нелинейности на динамику системы

1. Исследуем САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом фазовой плоскости.

Вариант №4-1-а

Исходные данные.

1) Структурная схема нелинейной САУ:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Система, в которой рабочие операции и операции управления выполняют технические устройства, называется системой автоматического управления (САУ) .

Структурной схемой называется графическое изображение математического описания системы.

Звено на структурной схеме изображается в виде прямоугольника с указанием внешних воздействий и внутри него записывается передаточная функция.

Совокупность звеньев совместно с линиями связи, характеризующими их взаимодействие, образует структурную схему.

2) Параметры структурной схемы:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Метод фазовой плоскости

Поведение нелинейной системы в любой момент времени определяется управляемой переменной и ее (n?1) производной, если эти величины отложить по осям координат, то полученное n?мерное пространство будет называться фазовым пространством. Состояние системы в каждый момент времени будет определяться в фазовом пространстве изображающей точкой. Во время переходного процесса изображающая точка перемещается в фазовом пространстве. Траектория ее движения называется фазовой траекторией. В установившемся режиме изображающая точка находится в состоянии покоя и называется особой точкой. Совокупность фазовых траекторий для различных начальных условий, совместно с особыми точками и траекториями называется фазовым портретом системы.

При исследовании нелинейной системы данным методом необходимо структурную схему (рис. 1.1) преобразовать к виду:

Знак минус говорит о том, что обратная связь отрицательная.

где X 1 и X 2 - выходная и входная величины линейной части системы соответственно.

Найдем дифференциальное уравнение системы:

Произведем замену, тогда

Решим это уравнение относительно старшей производной:

Положим, что:

Разделим уравнение (1.2) на уравнение (1.1) и получим нелинейное дифференциальное уравнение фазовой траектории:

где x 2 = f(x 1).

Если решать это ДУ методом изоклин, то можно построить фазовый портрет системы для различных начальных условий.

Изоклиной называется геометрическое место точек фазовой плоскости, которые фазовая траектория пересекает под одним и тем же углом.

В данном методе нелинейная характеристика делится на линейные участки и для каждого из них записывается линейное ДУ.

Для получения уравнения изоклины правая часть уравнения (1.3) приравнивается к постоянной величине N и решается относительно.

Учитывая нелинейность, получаем:

Задаваясь значениями N в диапазоне от до, строится семейство изоклин. На каждой изоклине проводится вспомогательная прямая под углом к оси абсцисс

где m X - масштабный коэффициент по оси х;

m Y - масштабный коэффициент по оси у.

Выбираем m X = 0,2 ед/см, m Y = 40 ед/см;

Конечная формула для угла:

Рассчитаем семейство изоклин и угол для участка, расчет сведем в таблицу 1:

Таблица 1

Рассчитаем семейство изоклин и угол для участка, расчет сведем в таблицу 2:

Таблица 2

Рассчитаем семейство изоклин и угол для участка, расчет сведем в таблицу 3:

Таблица 3

Построим фазовую траекторию

Для этого выбираются начальные условия на одной из изоклин (точка А), из точки А проводятся две прямые линии до пересечения со следующей изоклиной под углами б 1 , б 2 , где б 1 , б 2 ? соответственно углы первой и второй изоклины. Отрезок, отсекаемый этими линиями, делится пополам. Из полученной точки, середины отрезка, вновь проводятся две линии под углами б 2 , б 3 , и вновь отрезок делится пополам и т.д. Полученные точки соединяются плавной кривой.

Семейства изоклин строятся для каждого линейного участка нелинейной характеристики и разделяются между собой линиями переключения.

По фазовой траектории видно, что получена особая точка типа устойчивый фокус. Можно сделать вывод, что автоколебаний в системе нет, а переходный процесс устойчивый.

1.1 Проверим результаты расчетов с помощью структурного моделирования в программе MathLab

Структурная схема:

Фазовый портрет:

Переходный процесс при входном воздействии равном 2:

Xвых.max = 1.6

1.2 Исследуем влияние входного воздействия и параметров нелинейности на динамику системы

Увеличим входной сигнал до 10:

Xвых.max = 14,3

Трег = 0,055

X вых. max = 103

Т рег = 0,18

Увеличим зону чувствительности до 15:

Xвых.max = 0,81

Уменьшим зону чувствительности до 1:

Xвых.max = 3.2

Результатами моделирования были подтверждены результаты расчетов: из рисунка 1.7 видно, что процесс сходящийся, автоколебаний в системе нет. Фазовый портрет смоделированной системы схож с построенным расчетным путем.

Исследовав влияние входного воздействия и параметров нелинейности на динамику системы, можно сделать выводы:

1) при увеличении входного воздействия увеличивается уровень установившегося режима, количество колебаний не меняется, время регулирования увеличивается.

2) при увеличении мертвой зоны уровень установившегося режима увеличивается, количество колебаний также остается неизменным, время регулирования увеличивается.

2. Исследуем САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом гармонической линеаризации.

Вариант №5-20-c

Исходные данные.

1) Структурная схема:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

2) Значения параметров:

3) Вид и параметры нелинейности:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Наиболее широкое распространение для исследования нелинейных САУ высокого порядка (n > 2) получил приближенный метод гармонической линеаризации с применением частотных представлений, развитых в теории линейных систем.

Основная идея метода сводится к следующему. Пусть замкнутая автономная (без внешних воздействий) нелинейная система состоит из последовательно включённых нелинейного безынерционного НЗ и устойчивой или нейтральной линейной части ЛЧ (рис 2.3, а)

u=0 x z Х=Х m sinwt z y

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

y = Y m 1 sin (wt +)

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Для суждения о возможности существования моногармонических незатухающих колебаний в этой системе предполагается, что на входе нелинейного звена действует гармонический синусоидальный сигнал x(t) = X m sinwt (Рис. 2.3,б). При этом сигнал на выходе нелинейного звена z(t) = z содержит спектр гармонических составляющих с амплитудами Z m 1 , Z m 2 , Z m 3 , и т.д. и частотами w, 2w, 3w и т.д. Предполагается, что этот сигнал z(t), проходя через линейную часть W л (jw), фильтруется ею в такой степени, что в сигнале на выходе линейной части y(t) можно пренебречь всеми высшими гармониками Y m 2 , Y m 3 и т.д. и считать, что

y(t)Y m 1 sin(wt +)

Последнее предположение носит название гипотезы фильтра и выполнение этой гипотезы является необходимым условием гармонической линеаризации.

Условие эквивалентности схем, изображенных на рис. 2.3, а и б, можно сформулировать в виде равенства

x(t) + y(t) = 0(1)

При выполнении гипотезы фильтра y(t) = Y m 1 sin(wt +) уравнение (1) распадается на два

Уравнение (2) и (3) носят название уравнений гармонического баланса; первое из них выражает баланс амплитуд, а второе - баланс фаз гармонических колебаний.

Таким образом, для того, чтобы в рассматриваемой системе существовали незатухающие гармонические колебания, при соблюдении гипотезы фильтра должны выполняться условия (2) и (3)

Воспользуемся методом Гольдфарба для графоаналитического решения характеристического уравнения вида

W ЛЧ (p) W НЭ (A) +1 = 0

W ЛЧ (jw) W НЭ (A) = -1

Для приближенного определения автоколебаний строятся АФЧХ линейной части системы и обратная отрицательная характеристика нелинейного элемента.

Для построения АФЧХ линейной части преобразуем структурную схему к виду рис 2.4:

В результате преобразования получаем схему рис 2.5:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Найдем передаточную функцию линейной части системы:

Избавимся от иррациональности в знаменателе, домножив числитель и знаменатель на сопряженное к знаменателю, получим:

Разобьем получившееся на мнимую и действительную части:

Для построения обратной отрицательной характеристики нелинейного элемента воспользуемся формулой:

Параметры нелинейности:

А - амплитуда, при условии что.

АФЧХ линейной части системы и обратная отрицательная характеристика нелинейного элемента, представлена на рис. 2.6:

Для определения устойчивости автоколебаний воспользуемся следующей формулировкой: если точка соответствующая увеличенной амплитуде по сравнению с точкой пересечения не охватывается частотной характеристикой линейной части системы, то автоколебания устойчивые. Как видно из рисунка 2.6 решение устойчиво, следовательно, в системе устанавливаются автоколебания.

2.1 Проверим результаты расчетов с помощью структурного моделирования в программе MathLab.

Рис 2.7: Структурная схема

Переходный процесс при входном воздействии равном 1 (рис 2.8):

автоматический управление нелинейный гармонический

Как видно из графика устанавливаются автоколебания. Проверим влияние нелинейности на устойчивость системы.

2.2 Исследуем влияние входного воздействия и параметров нелинейности на динамику системы.

Увеличим входной сигнал до 100:

Увеличим входной сигнал до 270

Уменьшим входной сигнал до 50:

Увеличим насыщение до 200:

Уменьшим насыщение до 25:

Уменьшим насыщение до 10:

Результатами моделирования не однозначно подтвердили результаты расчетов:

1) Автоколебания возникают в системе, а изменение насыщения влияет на амплитуду колебаний.

2) При увеличении входного воздействия изменяется величина выходного сигнала и система стремиться к устойчивому состоянию.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ:

1. Сборник задач по теории автоматического регулирования и управления. Под ред. В.А. Бесекерского, издание пятое, переработанное. - М.: Наука, 1978. - 512 с.

2. Теория автоматического управления. Ч. II. Теория нелинейных и специальных систем автоматического управления. Под ред. А.А.Воронова. Учеб. пособие для вузов. - М.: Высш. школа, 1977. - 288 с.

3. Топчеев Ю.И. Атлас для проектирования систем автоматического регулирования: учеб. пособие. ? М.: Машиностроение, 1989. ? 752 с.

Размещено на Allbest.ru

Подобные документы

    Нелинейные системы, описываемые нелинейными дифференциальными уравнениями. Методы анализа нелинейных систем: кусочно-линейной аппроксимации, гармонической линеаризации, фазовой плоскости, статистической линеаризации. Использование комбинации методов.

    реферат , добавлен 21.01.2009

    Анализ устойчивости системы автоматического управления (САУ) по критерию Найквиста. Исследование устойчивости САУ по амплитудно-фазочастотной характеристике АФЧХ и по логарифмическим характеристикам. Инструменты управления приборной следящей системы.

    курсовая работа , добавлен 11.11.2009

    Анализ структурной схемы заданной системы автоматического управления. Основные условия устойчивости критерия Гурвица и Найквиста. Синтез как выбор структуры и параметров системы для удовлетворения заранее поставленных требований. Понятие устойчивости.

    курсовая работа , добавлен 10.01.2013

    Исследование режимов системы автоматического управления. Определение передаточной функции замкнутой системы. Построение логарифмических амплитудной и фазовой частотных характеристик. Синтез системы "объект-регулятор", расчет оптимальных параметров.

    курсовая работа , добавлен 17.06.2011

    Проектирование замкнутой, одномерой, стационарной, следящей системы автоматического управления с определением параметров корректирующего устройства, обеспечивающего заданные требования к качеству регулирования. Анализ системы с учетом нелинейности УМ.

    курсовая работа , добавлен 18.01.2011

    Структура замкнутой линейной непрерывной системы автоматического управления. Анализ передаточной функции системы с обратной связью. Исследование линейной импульсной, линейной непрерывной и нелинейной непрерывной систем автоматического управления.

    контрольная работа , добавлен 16.01.2011

    Уравнения связей структурной схемы САУ. Анализ линейной непрерывной системы автоматического управления. Критерии устойчивости. Показатели качества переходных процессов при моделировании на ЭВМ. Синтез последовательного корректирующего устройства.

    контрольная работа , добавлен 19.01.2016

    Проектирование структурной схемы электромеханического релейного следящего привода. Составление дифференциальных уравнений замкнутой нелинейной системы автоматического управления, построение ее фазового портрета. Гармоническая линеаризация нелинейности.

    курсовая работа , добавлен 26.02.2014

    Дискретные системы автоматического управления как системы, содержащие элементы, которые преобразуют непрерывный сигнал в дискретный. Импульсный элемент (ИЭ), его математическое описание. Цифровая система автоматического управления, методы ее расчета.

    реферат , добавлен 18.08.2009

    Выполнение синтеза и анализа следящей системы автоматического управления с помощью ЛАЧХ и ЛФЧХ. Определение типов звеньев передаточных функций системы и устойчивости граничных параметров. Расчет статистических и логарифмических характеристик системы.

2.7.3.1. Точные методы исследования нелинейных систем

1. Прямой метод Ляпунова. В его основе лежит теорема Ляпунова об устойчивости нелинейных систем. В качестве аппарата исследования используется функция Ляпунова, представляющая собой знакоопределённую функцию координат системы, имеющую также знакоопределённую производную во времени. Применение метода ограничивается его сложностью.

2. Метод Попова (румынский учёный) более прост, но пригоден только для некоторых частных случаев.

3. Метод, основанный на кусочно-линейной аппроксимации. Характеристики отдельных нелинейных звеньев разбивают на ряд линейных участков, в пределах которых задача оказывается линейной и может быть решена достаточно просто.

Метод может применяться, если число участков, на которые разбивается нелинейная характеристика, невелико (релейные характеристики). При большом количестве участков – сложно. Решение возможно только с помощью ЭВМ.

4. Метод фазового пространства. Позволяет исследовать системы с нелинейностями произвольного вида, а также с несколькими нелинейностями. При этом в фазовом пространстве строят так называемый фазовый портрет процессов, протекающих в нелинейной системе. По виду фазового портрета можно судить об устойчивости, возможности возникновения автоколебаний, точности в установившемся режиме. Однако размерность фазового пространства равна порядку дифференциального уравнения нелинейной системы. Применение для систем выше второго порядка практически невозможно.

5. Для анализа случайных процессов можно применять математический аппарат теории Марковских случайных процессов. Однако сложность метода и возможность решения уравнения Фоккера-Планка, которое требуется при анализе только для уравнений первого и в некоторых случаях второго порядка, ограничивает его использование.

Таким образом, точные методы анализа нелинейных систем хотя и позволяют получить точные, корректные результаты, однако очень сложны, что ограничивает их практическое применение. Эти методы важны с чисто научной, познавательной, исследовательской точки зрения, а поэтому их можно отнести к чисто академическим методам, практическое применение которых к реальным сложным системам не имеет смысла.

2.7.3.2. Приближённые методы исследования нелинейных систем

Сложность и ограниченность практического применения точных методов анализа нелинейных систем привели к необходимости разработки приближенных более простых методов исследования этих систем. Приближенные методы позволяют во многих практических случаях достаточно просто получить прозрачные и легко обозримые результаты анализа нелинейных систем. К приближенным методам относятся:



1. Метод гармонической линеаризации, основанный на замене нелинейного элемента его линейным эквивалентом, причём эквивалентность достигается для некоторого движения системы, близкого к гармоническому. Это позволяет достаточно просто исследовать возможность возникновения в системе управления автоколебаний. Однако метод может быть применён и для исследования переходных процессов нелинейных систем.

2. Метод статистической линеаризации также основан на замене нелинейного элемента его линейным эквивалентом, но при движении системы под воздействием случайных возмущений. Метод позволяет сравнительно просто исследовать поведение нелинейной системы при случайных воздействиях и найти её некоторые статистические характеристики.

Метод гармонической линеаризации

Применим к нелинейным системам, описываемым дифференциальным уравнением любого порядка. Рассмотрим его только применительно к расчёту автоколебаний в системе автоматического управления. Разобьем замкнутую систему управления на линейную и нелинейную части (рис. 7.2) с передаточными функциями и соответственно.

Для линейного звена:

Нелинейное звено может иметь нелинейные зависимости вида:

и др. Ограничимся зависимостью вида:


Рис. 7.2. К методу гармонической линеаризации

Поставим задачу исследования автоколебаний в данной нелинейной системе. Строго говоря, автоколебания будут несинусоидальными, однако будем считать, что для переменной x они близки к гармонической функции. Это оправдывается тем, что линейная часть (7.1), как правило, представляет собой фильтр нижних частот (ФНЧ). Поэтому линейная часть будет задерживать высшие гармоники, содержащиеся в переменной y . Данное предположение носит название гипотезы фильтра. В противном случае, если линейная часть представляет собой фильтр высоких частот (ФВЧ), то метод гармонической линеаризации может дать ошибочные результаты.



Пусть Подставляя в (7.2), разложим (7.2) в ряд Фурье:

Положим, что в искомых колебаниях отсутствует постоянная составляющая, т.е.

Это условие соблюдается всегда, когда нелинейная характеристика симметрична относительно начала координат и отсутствует приложенное к нелинейному звену внешнее воздействие.

Мы приняли, что , тогда .

В записанном разложении произведём замену и отбросим все высшие гармоники ряда, считая, что они отфильтровываются . Тогда для нелинейного звена получим приближённую формулу

где и - коэффициенты гармонической линеаризации, определяемые формулами разложения в ряд Фурье:

Таким образом, нелинейное уравнение (7.2) заменяется приближённым уравнением для первой гармоники (7.3), похожим на линейное уравнение. Особенностью его является то, что коэффициенты уравнения зависят от искомой амплитуды автоколебаний. В общем случае при более сложной зависимости (7.2) эти коэффициенты будут зависеть и от амплитуды, и от частоты.

Проделанная операция замены нелинейного уравнения приближённым линейным носит название гармонической линеаризации, а коэффициенты (7.4), (7.5) называют гармоническими коэффициентами передачи нелинейного звена.

Из (7.3) следует, что для рассматриваемой системы передаточная функция нелинейного звена:

Учитывая (7.1) и (7.3), получаем передаточную функцию разомкнутой системы:

и характеристическое уравнение замкнутой системы:

Подставляя в (7.6), находим частотную передаточную функцию разомкнутой системы:

Не зависит от [см. (7.8)].

Модуль эквивалентной передаточной функции нелинейного звена определяется формулой:

и равен отношению амплитуды первой гармоники на его выходе к амплитуде входной величены. Аргумент частотной передаточной функции нелинейного звена равен:

Можно показать, что для нелинейных звеньев с однозначными и симметричными относительно начала координат характеристиками, не имеющими гистерезистых петель, поэтому - чисто вещественная, а

Часто используется величина, обратная эквивалентной передаточной функции нелинейного звена:

называемая эквивалентным импедансом нелинейного звена. Использование её удобно при расчёте автоколебаний по критерию Найквиста. В качестве примера использования метода гармонической линеаризации рассмотрим релейную характеристику трехпозиционного реле без петли гистерезиса (рис. 7.3). Как видно из рис. 7.3, статическая характеристика симметрична относительно начала координат, следовательно, . Поэтому необходимо найти только коэффициент по формуле (7.4). Для этого подадим на вход звена синусоидальную функцию и построим y(t) (рис. 7.4).


Рис. 7.3. Статическая характеристика трехпозиционного

реле без петли гистерезиса

Как видно из рис. 7.4, при при

Фазовый угол , соответствующий x 1 = b, равен arcsin (b/a) (рис. 7.4).

Учитывая симметрию подынтегральной функции и в соответствии с (7.4), имеем:

Т.к. , то окончательно имеем:

Аналогичным образом можно произвести гармоническую линеаризацию других нелинейных звеньев. Результаты линеаризации приведены в , .

Как отмечалось выше, метод гармонической линеаризации удобен для анализа возможности появления в нелинейной системе режима автоколебаний и определения его параметров. Для расчёта автоколебаний используют различные критерии устойчивости. Наиболее просто и наглядно использование критерия Найквиста. Особенно удобно использование критерия Найквиста в случае, когда имеется нелинейная зависимость вида и эквивалентная передаточная функция нелинейного звена зависит только от амплитуды входного сигнала .


Рис. 7.4. Пример линеаризации релейной характеристики

Условия возникновения автоколебаний: появление в решении (7.7) пары чисто мнимых корней, а все остальные корни лежат в левой полуплоскости (связь с точкой –1,j0).

Приравняем (7.7) к минус единице:

Для решения (7.12) задаёмся различными значениями , строим АФХ. При некотором а = А АФХ пройдёт через точку (-1,j0), что соответствует отсутствию запасов устойчивости.

Частота и соответствуют частоте и амплитуде искомого гармонического колебания: (рис. 7.5).

Подобным образом можно отыскать периодическое решение для нелинейных зависимостей любого вида, приводящих, в частности, к тому, что эквивалентная передаточная функция нелинейного элемента зависит не только от амплитуды, но и от частоты. Если же ограничиться рассмотрением нелинейной зависимости вида , то процесс нахождения периодического режима можно упростить.

Рис. 7.5. Условие возникновения автоколебаний

Запишем уравнение (7.12) в виде:

См. (7.11). (7.13)

Уравнение (7.13) просто решается графически. Для этой цели необходимо отдельно построить АФХ и обратную АФХ взятую с обратным знаком. Точка пересечения двух АФХ определяет решение (7.13). Частоту периодического режима находим по отметкам частоты на графике , а амплитуду - по отметкам амплитуды на графике (рис. 7.6).

Однако найденный периодический режим соответствует автоколебаниям только тогда, когда он будет устойчив в том смысле, что этот режим может существовать в системе неограниченно длительное время. Устойчивость периодического режима можно определить следующим образом.

Предположим, что линейная часть системы в разомкнутом состоянии устойчива или нейтральна. Дадим амплитуде А некоторое положительное приращение А. Тогда возрастёт, следовательно, уменьшится. В результате уменьшается, следовательно, ещё больше удаляется от точки (-1,j0). А уменьшается и будет стремиться к 0. Аналогично, если А получило отрицательное приращение - А. Тогда уменьшится, следовательно, возрастёт, возрастёт, а, следовательно, амплитуда увеличится, т.к. АФХ приблизится к точке (-1,j0) (уменьшение запасов устойчивости).


Рис. 7.6. Условие возникновения автоколебаний при нелинейной

зависимости вида

Следовательно, всякое случайное отклонение А так изменяет систему, что амплитуда восстанавливает своё значение. Это соответствует устойчивости периодического режима, который соответствует автоколебаниям.

Критерий устойчивости периодического режима здесь сводится к тому, чтобы часть кривой , соответствующая меньшим амплитудам, охватывалась АФХ линейной части системы, что соответствует наличию одной точки пересечения характеристики с отрицательной частью оси вещественных значений (см. рис. 7.6).

При пересечении АФХ разомкнутой системы отрицательной части оси вещественных значений два раза возможно прохождение АФХ через точку (-1,j0) при двух значениях и (рис. 7.7).

Две точки пересечения соответствуют двум возможным периодическим решениям с параметрами и . Аналогично тому, как делалось выше, можно убедиться, что первая точка соответствует неустойчивому режиму периодических колебаний, а вторая – устойчивому, т.е. автоколебаниям (рис. 7.8).

В более сложных случаях, когда, допустим, неустойчива, можно определить устойчивость получаемого периодического режима, рассматривая расположение АФХ разомкнутой системы. Общим здесь остаётся то положение, что для получения устойчивости периодического режима необходимо, чтобы положительное приращение амплитуды приводило к сходящимся процессам в системе, а отрицательное – к расходящимся.

При отсутствии в системе возможных периодических режимов, близких к гармоническим, что обнаруживается изложенным расчётом, существует много различных вариантов поведения системы. Однако в системах, линейная часть которых обладает свойством подавления высших гармоник, особенно в таких системах, где при одних параметрах имеется периодическое решение , а при других нет, есть основание полагать, что при отсутствии периодического решения система будет устойчива относительно равновесного состояния. В этом случае устойчивость равновесного состояния можно оценить требованием, чтобы при устойчивой или нейтральной в разомкнутом состоянии линейной части её АФХ не охватывала годографа

Метод статистической линеаризации нелинейных характеристик

Для оценки статистических характеристик нелинейных систем можно использовать метод статистической линеаризации, основанный на замене нелинейной характеристики линейной, которая в известном смысле статистики равноценна исходной нелинейной характеристике.

Замена нелинейного преобразования линейным является приближённой и может быть справедливой лишь в некоторых отношениях. Поэтому понятие статистической эквивалентности, на основе которого производится такая замена, не является однозначным, и можно сформулировать различные критерии статистической эквивалентности нелинейного и заменяющего его линейного преобразований.

В случае когда линеаризации подвергается нелинейная безынерционная зависимость вида (7.2) , обычно применяются следующие критерии статистической эквивалентности :

Первый требует равенства математических ожиданий и дисперсий процессов и , где - выходная величина эквивалентного линеаризованного звена, а - выходная величина нелинейного звена;

Второй требует минимизации среднего квадрата разности процессов на выходе нелинейного и линеаризованного элементов.

Рассмотрим линеаризацию для случая применения первого критерия. Заменим нелинейную зависимость (7.2) линейной характеристикой (7.14), которая имеет такие же математические ожидания и дисперсию, какие имеются на выходе нелинейного звена с характеристикой (7.2). С этой целью представим (7.14) в виде: , где - центрированная случайная функция.

По выбранному критерию коэффициенты и должны удовлетворять следующим соотношениям:

Из (7.15) следует, что статистическая равноценность имеет место, если

причём знак должен совпадать со знаком производной нелинейной характеристики F(x ).

Величины и называют коэффициентами статистической линеаризации. Для их вычисления нужно знать и сигнала на выходе нелинейного звена:

где - плотность вероятности распределения случайного сигнала на входе нелинейного звена.

Для второго критерия коэффициенты статистической линеаризации выбираются таким образом, чтобы обеспечить минимум среднего квадрата разности процессов на выходе нелинейного и линеаризованного звена, т.е. обеспечить выполнение равенства

Коэффициенты статистической линеаризации, как следует из (7.16), (7.17) и (7.18), зависят не только от характеристик нелинейного звена, но и от закона распределения сигнала на его входе. Во многих практических случаях закон распределения этой случайной величины может быть принят гауссовским (нормальным), описываемым выражением

Это объясняется тем, что нелинейные звенья в системах управления соединяются последовательно с линейными инерционными элементами, законы распределения выходных сигналов которых близки к гауссовским при любых законах распределения их входных сигналов. Чем более инерционна система, тем ближе закон распределения сигнала на выходе к гауссовскому, т.е. инерционные устройства системы приводят к восстановлению гауссовского распределения, нарушаемого нелинейными звеньями. Кроме этого, изменение закона распределения в широких пределах малого влияет на коэффициенты статистической линеаризации. Поэтому полагают, что сигналы на входе нелинейных элементов распределены по гауссовскому закону.

При этом коэффициенты и зависят только от и сигнала на входе нелинейного звена, поэтому для типовых нелинейных характеристик коэффициенты и могут быть заранее вычислены, что существенно упрощает расчёты систем методом статистической линеаризации. Для нормального закона распределения и типовых нелинейных звеньев при расчете нелинейных систем можно воспользоваться данными, приведенными в .

Применение метода статистической линеаризации для анализа

стационарных режимов и срыва слежения

Возможность замены характеристик нелинейных звеньев линейными зависимостями позволяет при анализе нелинейных систем использовать методы, разработанные для линейных систем. Применим метод статистической линеаризации для анализа стационарных режимов в системе, изображённой на рис. 7.9,

где F(e) – статическая характеристика нелинейного элемента (дискриминатора);

W(p) – передаточная функция линейной части системы.

Задача анализа заключается в оценке влияния характеристик дискриминатора на точность системы и определении условий, при которых нарушается нормальная работа системы и происходит срыв слежения.

При анализе точности работы относительно неслучайной составляющей сигнала g(t) нелинейный элемент F(e) в соответствии с методом статистической линеаризации заменяется линейным звеном с коэффициентом передачи . Динамическая ошибка, как было показано ранее, находится по формуле: ,

Пример нахождения и , а также определения условия срыва слежения приведён в .

Вопросы для самопроверки

1. Назовите приближенные методы анализа нелинейных систем.

2. В чем заключается сущность метода гармонической линеаризации?

3. В чем заключается сущность метода статистической линеаризации?

4. Для каких нелинейных звеньев q¢ (a) = 0?

5. Какие критерии статистической эквивалентности вы знаете?

"Теория автоматического управления"

"Методы исследования нелинейных систем"


1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

где – начальные условия.

Если отклонения не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат - в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией. Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом. Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. При этом: U(t)=0, e(t)=– x(t)


В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4)

где скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

Рассмотрим несколько случаев

Файлов GB_prog.m и GB_mod.mdl, а анализ спектрального состава периодического режима на выходе линейной части – при помощи файлов GB_prog.m и R_Fourie.mdl. Cодержание файла GB_prog.m: %Исследование нелинейных систем методом гармонического баланса %Используемые файлы: GB_prog.m, GB_mod.mdl и R_Fourie.mdl. %Используемые обозначениЯ: НЭ – нелинейный элемент, ЛЧ – линейнаЯ часть. %Очистка всех...





Безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных. В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы...