Глава ii.строение атомов и периодический закон. Поговорим о том, как найти протоны, нейтроны и электроны

Протон -- стабильная частица из класса адронов, ядро атома водорода.

Трудно сказать, какое событие следует считать открытием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и открытие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906--1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона, подтвердив открытие искусственного превращения элементов. В этих опытах?-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атомный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10-21. Масса протона mp = (938,2796 ± 0,0027)МэВ или ~ 1,6-10-24 г, т. е. протон в 1836 раз тяжелее электрона! С современной точки зрения протон не является истинно элементарной частицей: он состоит из двух u-кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d-кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами -- глюонами, квантами поля, переносящего сильные взаимодействия. Данные экспериментов, в которых рассматривались процессы рассеяния электронов на протонах, действительно свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечные размеры ~ 10-13 см, хотя, разумеется, его нельзя представлять как твердый шарик. Скорее, протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.Протон, как и все адроны, участвует в каждом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимодействия -- протоны и электроны в атомах. Примерами слабых взаимодействий могут служить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и нейтрино (для свободного протона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полуцелым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, различные гипероны (?, ?, ?, ?) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число -- барионный заряд, равный 1 для барионов, - 1 -- для антибарионов и О -- для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохранения барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сохранение барионного заряда делает невозможным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический характер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабильностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

В то же время в теориях, объединяющих все виды фундаментальных взаимодействий, предсказываются процессы, приводящие к нарушению барионного заряда и к распаду протона. Время жизни протона в таких теориях указывается не очень точно: примерно 1032±2 лет. Это время огромно, оно во много раз больше времени существования Вселенной (~ 2*1010 лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни. Однако поиски распада протона представляют сейчас одну из важнейших задач экспериментальной физики. При времени жизни протона ~ 1032 лет в объеме воды в 100 м3 (1 м3 содержит ~ 1030 протонов) следует ожидать распада одного протона в год. Остается всего лишь зарегистрировать этот распад. Открытие распада протона станет важным шагом к правильному пониманию единства сил природы.

Нейтрон -- нейтральная частица, относящаяся к классу адронов. Открыт в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона qn равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что |qn| <10-20e (здесь е -- элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку |qn|< 2?10-22 е. Спин нейтрона равен 1/2. Как адрон с полуцелым спином, он относится к группе барионов. У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен +1.Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного u-кварка с электрическим зарядом +2/3 и двух d-кварков с зарядом - 1/3, связанных между собой глюонным полем.

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон -- нестабильная частица, распадающаяся на протон (р), электрон (е-) и электронное антинейтрино. Время жизни нейтрона составляет (917 ?14) с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: mn-mp(1,29344 ±0,00007) МэВ. Из сопоставления ее с массой протона получим массу нейтрона: mn = 939,5731 ± 0,0027 МэВ; это соответствует mn ~ 1,6-10-24.Нейтрон участвует во всех видах фундаментальных взаимодействий. Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия -- бета-распад нейтрона.

Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса. Это лишь один из примеров его электромагнитного взаимодействия. Большой интерес приобрели поиски дипольного электрического момента нейтрона, для которого была получена верхняя граница. Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР; поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах.

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии:

медленные нейтроны (<105эВ, есть много их разновидностей),

быстрые нейтроны (105?108эВ), высокоэнергичные (> 108эВ).

Весьма интересными свойствами обладают очень медленные нейтроны(10-7эВ), которые получили название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов. Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне в институте ядерных исследований спустя почти десятилетие.

Недавно ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро - центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы - протона.


Диаметр ядра атома равен примерно 10-13 - 10-12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95-99,98%) сосредоточена в ядре. Если бы удалось получить 1 см3 чистого ядерного вещества, масса его составила бы 100-200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.


Протон - элементарная частица, ядро атома водорода. Масса протона равна 1,6721 х 10-27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66 х 10-19 Кл. Кулон - единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).


Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон - это водород, если 26 протонов - это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).


Нейтрон - электрически нейтральная частица с массой 1,6749 х 10-27кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии - нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой - А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A - Z.


Электрон - элементарная частица, носитель наименьшей массы - 0,91095х10-27г и наименьшего электрического заряда - 1,6021х10-19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.


Позитрон - элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.


Различные типы ядер называют нуклидами. Нуклид - вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом):
, Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами . Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.


Обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А - массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32Р, 33Р или Р и Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор - 32, фосфор - 33.


Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1Н-протия, известен тяжелый водород 2Н-дей-терий и сверхтяжелый водород 3Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.


В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.


Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, углерода 12С и 14С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90Sr, 131J, 137Cs.

Все физические тела природы построены из разновидности материи, называемой веществом. Вещества подразделяются на две основные группы - вещества простые и сложные.

Сложными веществами называются такие вещества, которые путем химических реакций могут быть разложены на другие, более простые вещества. В отличие от сложных простыми веществами называются такие, которые химическим путем не могут быть разложены на еще более простые вещества.

Примером сложного вещества может служить вода, которая путем химической реакции может быть разложена на два других, более простых вещества - водород и кислород. Что же касается последних двух, то они химическим путем уже не могут быть разложены на более простые вещества, а поэтому являются простыми веществами, или, иначе, химическими элементами.

В первой половине XIX века в науке существовало предположение, что химические элементы являются неизменными веществами, не имеющими общей связи друг с другом. Однако русский ученый Д. И. Менделеев (1834 - 1907) впервые в 1869 г. выявил связь химических элементов, показав, что качественная характеристика каждого из них находится в зависимости от его количественной характеристики - атомного веса.

Изучая свойства химических элементов, Д. И. Менделеев подметил, что свойства их периодически повторяются в зависимости от их атомного веса. Эту периодичность он отобразил в форме таблицы, вошедшей в науку под названием «Периодическая система элементов Менделеева».

Ниже приведена современная периодическая таблица химических элементов Менделеева.

Атомы

Согласно современным представлениям науки каждый химический элемент состоит из совокупности мельчайших материальных (вещественных) частиц, называемых атомами.

Атомом называется самая малая доля химического элемента, которая уже не может быть разложена химическим путем на другие, более мелкие и простые материальные частицы.

Атомы различных по своей природе химических элементов отличаются друг от друга своими физико-химическими свойствами, структурой, размерами, массой, атомным весом, собственной энергией и некоторыми иными свойствами. Например, атом водорода резко отличается по своим свойствам и структуре от атома кислорода, а последний - от атома урана и т. д.

Установлено, что атомы химических элементов чрезвычайно малы по своим размерам. Если условно принять, что атомы имеют шарообразную форму, то поперечники их должны быть равны стомиллионным долям сантиметра. Например, поперечник атома водорода - самого маленького атома в природе - равен одной стомиллионной доле сантиметра (10 -8 см), а поперечники самых больших атомов, например атома урана, не превышают трех стомиллионных долей сантиметра (3 · 10 -8 см). Следовательно, атом водорода во столько раз меньше шарика радиусом в один сантиметр, во сколько последний меньше земного шара.

В соответствии с весьма малыми размерами атомов их масса также очень мала. Например, масса атома водорода равна т = 1,67· 10 -24 г. Это значит, что в одном грамме водорода содержится примерно 6 · 10 23 атомов.

За условную единицу измерения атомных весов химических элементов принята 1/16 часть веса атома кислорода, В соответствии с этим атомным весом химического элемента называют отвлеченное число, показывающее, во сколько раз вес данного химического элемента больше 1/16 части веса атома кислорода.

В периодической таблице элементов Д. И. Менделеева приведены атомные веса всех химических элементов (см. число, помещенное под названием элемента). Из этой таблицы мы видим, что наиболее легким атомом является атом водорода, имеющий атомный вес 1,008. Атомный вес углерода равен 12, кислорода - 16 и т. д.

Что же касается более тяжелых химических элементов, то их атомный вес превышает атомный вес водорода более чем в двести раз. Так, атомный вер ртути равен 200,6, радия - 226 и т.д.Чем выше порядок номера, занимаемого химическим элементом в периодической системе элементов, тем больше атомный вес.

Большая часть атомных весов химических элементов выражается дробными числами. Это в известной мере объясняется тем, что такие химические элементы состоят из совокупности скольких сортов атомов, обладающих различными атом весами, но одинаковыми химическими свойствами.

Химические элементы, занимающие один вый номер в периодической системе элементов, а следовательно, обладающие одинаковыми химическими свойствами, но различными атомными весами, называются изотопами.

Изотопы найдены у большинства химических элементов, имеет два изотопа, кальций - четыре, цинк - пять, олово - одиннадцать и т. д. Многие изотопы получены искусстве путем, среди них некоторые имеют большое практическое значение.

Элементарные частицы вещества

Долгое время считалось, что атомы химических элем являются пределом делимости вещества, т. е. как бы элементарными "кирпичиками" мироздания. Современная наука отвергла эту гипотезу, установив, что атом любого химического эле представляет собой совокупность еще более мелких материальных частиц, чем сам атом.

Согласно электронной теории строения вещества атом любого химического элемента представляет собой систему, состоящую из центрального ядра, вокруг которого вращаются "элементарные" вещественные частицы, называемые электронами. Ядра атомов, согласно общепринятым взглядам состоят из совокупности "элементарных" вещественных частиц - протонов и нейтронов.

Чтобы понять строение атомов и физико-химические процессы в них, необходимо хотя бы вкратце ознакомиться с основными характеристиками элементарных частиц, входящих в состав атомов.

Установлено, что электрон - это вещественная частица, обладающая самым малым наблюдаемым в природе отрицательным электрическим зарядом .

Если условно считать, что электрон как частица имеет шарообразную форму, то поперечник электрона должен быть равным 4 · 10 -13 см, т. е. он меньше поперечника любого атома в десятки тысяч раз.

Электрон, как и всякая иная вещественная частица, обладает массой. "Масса покоя" электрона, т. е. та масса, которой он обладает в состоянии относительного покоя, равна m о = 9,1 · 10 -28 г.

Исключительно малая "масса покоя" электрона свидетельствует о том, что инертные свойства электрона проявляются исключительно слабо, а это значит, что электрон под влиянием переменной электрической силы может колебаться в пространстве с частотой во много миллиардов периодов в секунду.

Масса электрона настолько мала, что для получения одного грамма электронов их потребовалось бы взять 1027 единиц. Чтобы иметь хотя бы некоторое физическое представление об этом колоссально большом числе, приведем такой пример. Если бы можно было один грамм электронов расположить на прямой линии вплотную друг к другу, то они образовали бы цепочку длиной в четыре миллиарда километров.

Масса электрона, как и всякой иной вещественной микрочастицы, зависит от скорости его движения. Электрон, находясь в состоянии относительного покоя, обладает "массой покоя", имеющей механическую природу, как и масса всякого физического тела. Что же касается "массы движения" электрона, увеличивающейся с ростом скорости его движения, то она электромагнитного происхождения. Она обусловлена наличием у движущегося электрона электромагнитного поля как некоторого вида материи, обладающего массой и электромагнитной энергией.

Чем быстрее движется электрон, тем больше проявляются инерционные свойства его электромагнитного поля, тем, следовательно, больше масса последнего и соответственно электромагнитная энергия его. Так как электрон со своим электромагнитным полем составляет единую, органически связанную материальную систему, то естественно, что массу движения электромагнитного поля электрона можно непосредственно приписать самому электрону.

Электрон, помимо свойств частицы, обладает и волновыми свойствами. Опытом установлено, что поток электронов, подобно световому потоку, распространяется в форме волнообразного движения. Характер волнового движения электронного потока в пространстве подтверждается явлениями интерференции и дифракции электронных волн.

Интерференция электронов - это явление наложения электронных воли друг на друга, а дифракция электронов - это явление огибания электронными волнами краев узкой щели, сквозь которую проходит электронный поток. Следовательно, электрон - это не просто частица, а "частица-волна", длина которой зависит от массы и скорости движения электрона.

Установлено, что электрон, помимо своего поступательного движения, совершает еще и вращательное движение вокруг своей оси. Этот вид движения электрона получил название "спина" (от английского слова "спин" - веретено). В результате такого движения электрон, кроме электрических свойств, обусловленных электрическим зарядом, приобретает еще и магнитные свойства, напоминая в этом отношении элементарный магнитик.

Протон - это вещественная частица, обладающая положительным электрическим зарядом, равным по абсолютной величине электрическому заряду электрона.

Масса протона равна 1,67 · 10 -24 г, т. е. она примерно в 1840 раз больше "массы покоя" электрона.

В отличие от электрона и протона, нейтрон не обладает электрическим зарядом, т. е. он является электронейтральной «элементарной» частицей вещества. Масса нейтрона практически равна массе протона.

Электроны, протоны и нейтроны, находясь в составе атомов, взаимодействуют друг с другом. В частности, электроны и протоны взаимно притягиваются друг к другу как частицы, обладающие разноименными электрическими зарядами. Одновременно с этим электрон от электрона и протон от протона отталкиваются как частицы, обладающие одноименными электрическими зарядами.

Взаимодействие всех этих электрически заряженных частиц происходит через их электрические поля. Эти поля представляют собой особый вид материи, состоящей из совокупности элементарных материальных частиц, называемых фотонами. Каждый фотон обладает строго определенным присущим ему количеством энергии (квантом энергии).

Взаимодействие электрически заряженных материальных вещественных частиц осуществляется путем обмена их друг с другом фотонами. Сила взаимодействия электрически заряженных частиц обычно называется электрической силой .

Нейтроны и протоны, находящиеся в ядрах атомов, также взаимодействуют друг с другом. Однако это взаимодействие их осуществляется уже не через электрическое поле, так как нейтрон - электронейтральная частица вещества, а через так называемое ядерное поле .

Это поле также представляет собой особый вид материи, состоящей из совокупности элементарных материальных частиц, называемых мезонами . Взаимодействие нейтронов и протонов осуществляется путем обмена их друг с другом мезонами. Сила взаимодействия нейтронов и протонов друг с другом называется ядерной силой .

Установлено, что ядерные силы действуют в ядрах атомов в пределах исключительно малых расстояний - примерно 10 - 13 см.

Ядерные силы значительно превосходят по своей величине электрические силы взаимного отталкивания протонов в ядре атома. Это приводит к тому, что они в состоянии не только преодолеть внутри ядер атомов силы взаимного отталкивания протонов, но и создать из совокупности протонов и нейтронов весьма прочные системы ядер.

Устойчивость ядра каждого атома зависит от соотношения двух противоречивых сил - ядерных (взаимное притяжение протонов и нейтронов) и электрических (взаимное отталкивание протонов).

Мощные ядерные силы, действующие в ядрах атомов, способствуют превращению нейтронов и протонов друг в друга. Эти взаимопревращения нейтронов и протонов осуществляются в результате выделения или поглощения ими более легких элементарных частиц, например мезонов.

Рассмотренные нами частицы названы элементарными потому, что они не состоят из совокупности других, более простых частиц материи. Но в то же время не надо забывать, что они способны превращаться друг в друга, возникать за счет друг друга. Таким образом, эти частицы являются некоторыми сложными образованиями, т. е. их элементарность условна.

Химическое строение атомов

Простейшим по своему устройству атомом является атом водорода. Он состоит из совокупности только двух элементарных частиц - протона и электрона. Протон в системе атома водорода играет роль центрального ядра, вокруг которого по некоторой орбите вращается электрон. На рис. 1 схематически показана модель атома водорода.

Рис. 1. Схема строения атома водорода

Эта модель - только грубое приближение к действительности. Дело в том, что электрон как "частица-волна" не обладает резко отграниченным от внешней среды объемом. А это значит, что следует говорить не о некоторой точной линейной орбите электрона, а о своеобразном электронном облачке. При этом электрон чаще всего занимает некоторую среднюю линию облачке, являющуюся одной из возможных орбит его в атоме.

Надо сказать, что и сама орбита электрона не является строга неизменной и неподвижной в атоме - она тоже в силу изменения массы электрона совершает некоторое вращательное движение. Следовательно, движение электрона в атоме носит относительно сложный характер. Так как ядро атома водорода (протон) и вращающийся вокруг него электрон обладают разноименными электрическими зарядами, то они взаимно притягиваются.

Одновременно с этим стой энергии электрон, вращаясь вокруг ядра атома, развивает центробежную силу, стремящуюся удалить его от ядра. Следовательно, электрическая сила взаимного притяжения ядра атома и электрона и центробежная сила, действующая на электрон, - силы противоречивые.

При равновесии их электрон занимает относительно устойчивое положение на некоторой орбите в атоме. Так как масса электрона очень мала, то для уравновешивания силы притяжения к ядру атома он должен вращаться с громадной скоростью, равной примерно 6· 10 15 оборотам в секунду. Это значит, что электрон в системе атома водорода, как и всяком ином атоме, движется по своей орбите с линейной скоростью, превышающей тысячу километров в секунду.

В нормальных условиях электрон вращается в атоме рода по наиболее близко расположенной к ядру орбите. При этом он обладает минимальным возможным количеством энергии. Если же по тем или иным причинам, например под воздействием каких-либо иных материальных частиц, вторгнувшихся систему атома, электрон перейдет на более удаленную от атома орбиту, то он уже будет обладать несколько большим количеством энергии.

Однако на этой новой орбите электрон но пребывает ничтожно малое время, после чего он снова вращается на ближайшую к ядру атома орбиту. При этом ходе он отдает излишек своей энергии в виде кванта эле магнитного излучения - лучистой энергии (рис. 2).

Рис. 2. Электрон при переходе с далекой орбиты на более близкую к ядру атома излучает квант лучистой энергии

Чем больше получает извне энергии электрон, тем на удаленную от ядра атома орбиту он переходит и тем большее количество электромагнитной энергии он излучает, когда вращается на ближайшую к ядру орбиту.

Измеряя количество энергии, излучаемой электроном при переходе с различных орбит на ближайшую к ядру атома, удалось установить, что электрон в системе атома водорода, как и в системе любого иного атома, может переходить не на любую произвольную орбиту, на строго определенную в соответствии с той энергией, которую он получает под действием внешней силы. Орбиты, которые может занимать электрон в атоме, называются дозволенными орбитами.

Так как положительный заряд ядра атома водорода (заряд протона) и отрицательный заряд электрона численно равны, то суммарный их заряд равен нулю. Это значит, что атом водорода, находясь в нормальном состоянии, является электронейтральной частицей.

Это справедливо для атомов всех химических элементов: атом любого химического элемента, находящийся в нормальном со стоянии, является электронейтральной частицей из-за численного равенства его положи тельных и отрицательных зарядов.

Поскольку в состав ядра атома водорода входит только одна "элементарная" частица - протон, то так называемое массовое число этого ядра равно единице. Массовым числом ядра атома любого химического элемента называется общее число протонов и нейтронов входящих в состав этого ядра.

Природный водород в основном состоит из совокупности атомов с массовым числом, равным единице. Однако в составе его имеется и другой сорт атомов водорода, с массовым числом равным двум. Ядра атомов этого тяжелого водорода называемые дейтонами, состоят из двух частиц - протона и нейтрона. Этот изотоп водорода называется дейтерием.

В природном водороде дейтерия содержится весьма незначительное количество. На каждые шесть тысяч атомов легкого водорода (массовое число равно единице) приходится только один атом дейтерия (тяжелого водорода). Существует еще один изотоп водорода - сверхтяжелый водород получивший название тритий. В ядрах атома этого изотопе водорода имеются три частицы: протон и два нейтрона, связанных друг с другом ядерными силами. Массовое число ядра атома трития равно трем, т. е. атом трития в три раза тяжелей атома легкого водорода.

Хотя атомы изотопов водорода и имеют различные массы но все же они обладают одинаковыми химическими свойствами, Например, легкий водород, вступая в химическое взаимодействие с кислородом, образует с ним сложное вещество - воду. Аналогично этому изотоп водорода - дейтерий, соединяясь с кислородом, образует воду, которая в отличие от обычной воды называется тяжелой водой. Тяжелая вода находит большое применение в процессе производства ядерной (атомной) энергии.

Следовательно, химические свойства атомов зависят не от массы их ядер, а только от строения электронной оболочки атома. Поскольку в атомах легкого водорода, дейтерия и трития имеется одинаковое количество электронов (по одному на каждый атом), эти изотопы имеют одинаковые химические свойства.

Химический элемент водород не случайно занимает первый номер в периодической системе элементов. Дело в том, что между номером любого элемента в периодической системе элементов и величиной заряда ядра атома этого элемента существует некоторая связь. Ее можно сформулировать так: порядковый номер всякого химического элемента в периодической системе элементов численно равен положительному заряду ядра этого элемента, а следовательно, и числу вращающихся вокруг него электронов.

Так как водород занимает первый номер в периодической системе элементов, то это значит, что положительный заряд ядра его атома равен единице и что вокруг ядра вращается один электрон.

Химический элемент гелий занимает второй номер в периодической системе элементов. Это значит, что он имеет положительный электрический заряд ядра, равный двум единицам, т. е. в составе его ядра должно быть два протона, а в электронной оболочке атома - два электрода.

Природный гелий состоит из двух изотопов - тяжелого и легкого гелия. Массовое число тяжелого гелия равно четырем. Это значит, что в состав ядра атома тяжелого гелия, помимо вышеупомянутых двух протонов, должны входить еще два нейтрона. Что же касается легкого гелия, то его массовое число равно трем, т. е. в состав его ядра, помимо двух протонов, должен входить еще один нейтрон.

Установлено, что в природном гелии число атомов легкого гелия составляет примерно одну миллионную долю атомов тяжелого гения. На рис. 3 показана схематически модель атома гелия.

Рис. 3. Схема строения атома гелия

Дальнейшее усложнение строения атомов химических элементов идет за счет увеличения количества протонов и нейтронов в ядрах этих атомов и одновременно за счет увеличения количества электронов, вращающихся вокруг ядер (рис. 4). Пользуясь периодической системой элементов, легко определить число электронов, протонов и нейтронов входящих в состав различных атомов.

Рис. 4. Схемы строения ядер атомов: 1 - гелий, 2 - углерод, 3 - кислород

Порядковый номер химического элемента равен числу протонов, находящихся в ядре атома, а одновременно с этим числу электронов, вращающихся вокруг ядра. Что же касается атомного веса, то он приближенно равен массовому числу атома, т. е. числу вместе взятых протонов и нейтронов в ядре. Следовательно, вычитая из атомного веса элемента число, равное порядковому номеру элемента, можно определить, какое количество нейтронов содержится в данном ядре.

Установлено, что ядра легких химических элементов, имеющих в своем составе поровну протонов и нейтронов, отличаются весьма большой прочностью, так как ядерные силы в них относительно велики. Например, ядро атома тяжелого гелия отличается исключительно большой прочностью, так как оно составлено из двух протонов и двух нейтронов, связанных друг с другом мощными ядерными силами.

Ядра атомов более тяжелых химических элементов содержат в своем составе уже неодинаковое количество протонов и нейтронов, поэтому их связь в ядре слабее, чем в ядрах легких химических элементов. Ядра этих элементов могут быть относительно легко расщеплены при бомбардировке их атомными «снарядами» (нейтронами, ядрами атома гелия и т. д.).

Что же касается наиболее тяжелых химических элементов, в частности радиоактивных, то их ядра отличаются настолько малой прочностью, что они самопроизвольно распадаются на составные части. К примеру, атомы радиоактивного элемента радия, состоящего из совокупности 88 протонов и 138 нейтронов, самопроизвольно распадаются, превращаясь в атомы радиоактивного элемента радона. Атомы же последнего в свою очередь распадаются на составные части, переходя в атомы других элементов.

Ознакомившись вкратце с составными частями ядер атомов химических элементов, рассмотрим строение электронных оболочек атомов. Как известно, электроны могут вращаться вокруг ядер атомов только по строго определенным орбитам. При этом они так сгруппированы в электронной оболочке каждого атома, что можно различить отдельные слои электронов.

В каждом слое может находиться количество электронов, не превышающее строго определенного числа. Так, например, в первом, ближайшем к ядру атома электронном слое может находиться максимум два электрона, во втором - не более восьми электронов и т. д.

Те атомы, у которых внешние электронные слои целиком заполнены, имеют наиболее устойчивую электронную оболочку. Это значит, что данный атом прочно держит все свои электроны и не нуждается в получении извне добавочного количества их. Например, атом гелия имеет два электрона, целиком заполняющих первый электронный слой, а атом неона имеет десять электронов, из которых первые два целиком заполняют первый электронный слой, а остальные - второй (рис. 5).

Рис. 5. Схема строения атома неона

Следовательно, атомы гелия и неона имеют вполне устойчивые электронные оболочки, не стремятся их как-нибудь видоизменить количественно. Такие элементы химически инертны, т. е. не вступают в химическое взаимодействие с другими элементами.

Однако большинство химических элементов имеет такие атомы, в которых внешние электронные слои не целиком заполнены электронами. Например, атом калия имеет девятнадцать электронов, из которых восемнадцать целиком заполняют первые три слоя, а девятнадцатый электрон один находится в следующем, незаполненном электронном слое. Слабое заполнение электронами четвертого электронного слоя приводит к тому, что ядро атома весьма слабо удерживает самый внешний - девятнадцатый электрон, а поэтому последний может быть легко вырван из атома. .

Или, например, атом кислорода имеет восемь электронов, из которых два целиком заполняют первый слой, а остальные шесть размещены во втором слое. Таким образом, для полного завершения построения второго электронного слоя в атоме кислорода ему не хватает только двух электронов. Поэтому атом кислорода не только прочно удерживает свои шесть электронов во втором слое, но и обладает возможностью притянуть к себе два недостающих ему электрона для заполнения своего второго электронного слоя. Этого он достигает путем химического соединения с атомами таких элементов, у которых внешние электроны слабо связаны со своими ядрами.

Химические элементы, атомы которых не имеют целиком заполненных электронами внешних электронных слоев, как правило, химически активны, т. е. охотно вступают в химическое взаимодействие.

Итак, электроны в атомах химических элементов располагаются в строго определенном порядке и всякое изменение их пространственного расположения или количества в электронной оболочке атома приводит к изменению физико-химических свойств последнего.

Равенство числа электронов и протонов в системе атома является причиной того, что суммарный электрический заряд его равен нулю. Если равенство числа электронов и протонов в системе атома нарушается, то атом становится электрически заряженной системой.

Атом, в системе которого нарушено равновесие разноименных электрических зарядов вследствие того, что он потерял часть своих электронов или, наоборот, приобрел лишнее количество их, называется ионом.

Наоборот, если атом приобретает некоторое лишнее количество электронов, то он становится отрицательным ионом. Например, атом хлора, получивший один лишний электрон, превращается в однозарядный отрицательный ион хлора Сl - . Атом кислорода, получивший лишних два электрона, превращается в двухзарядный отрицательный ион кислорода О и т. д.

Атом, превратившийся в ион, становится по отношению к внешней среде электрически заряженной системой. А это значит, что атом стал обладать электрическим полем, вместе с которым он составляет единую материальную систему и через это поле осуществляет электрическое взаимодействие с другими электрически заряженными частицами вещества - ионами, электронами, положительно заряженными ядрами атомов и т. д.

Способность разноименных ионов взаимно притягиваться друг к другу является причиной того, что они химически соединяются, образуя более сложные частицы вещества - молекулы.

В заключение следует отметить, что размеры атома очень велики по сравнению с размерами тех вещественных частиц, из которых они состоят. Ядро самого сложного атома вместе со всеми электронами занимает миллиардную долю объема атома. Простой подсчет показывает, что если бы удалось один кубический метр платины сжать так крепко, чтобы исчезли внутриатомные и междуатомные пространства, то получился бы объем, равный примерно одному кубическому миллиметру.

Инструкция

Протон представляет собой положительно с массой превышающей в 1836 раз массу . Электрический совпадает по модулю с зарядом электрона, а значит, заряд протона равен 1,6*10 ^ (-19) Кулон. Ядра разных атомов содержат разное число . К примеру, в ядре атома водорода только один , а в ядре атома золота – семьдесят девять. Число протонов в ядре совпадает с порядковым номером данного элемента в таблице Д.И. Менделеева. Поэтому для того, чтобы определить число протонов в ядре , нужно взять таблицу Менделеева, найти в ней нужный элемент. Указанное вверху целое число является порядковым номером элемента - это и есть число протонов в ядре. Пример1. Пусть нужно определить число протонов в ядре атома полония. Найдите в таблице Менделеева химический , он расположен под номером 84, значит в его ядре находится 84 протона.

Интересно, что количество протонов в ядре совпадает с числом электронов, движущихся вокруг ядра. То есть число электронов элемента определяется так же, как и число протонов – порядковым номером элемента. Пример 2. Если полония - 84, то в нем 84 протона (в ядре) и столько же - 84 электронов.

Нейтрон представляет собой незаряженную частицу с массой, которая больше массы электрона в 1839 раз. Помимо порядкового номера, в периодической таблице химических элементов для каждого вещества указано еще одно число, которое, если его округлить, показывает общее количество частиц (протонов и нейтронов ) в атомном ядре. Это число называется массовым числом. Для определения количества нейтронов в ядре нужно вычесть из массового числа количество протонов . Пример 3. Количество протонов в полония – 84. Его массовое число равно 210, значит, для определения числа нейтронов найдите разность массового числа и порядкового номера: 210 – 84 = 126.

Атом химического элемента состоит из атомного ядра и электронов. В состав атомного ядра входят два типа частиц - протоны и нейтроны. Почти вся масса атома сосредоточена в ядре, так как протоны и нейтроны намного тяжелее электронов.

Вам понадобится

  • атомный номер элемента, изотопы

Инструкция

В отличие от протонов, нейтроны не имеют электрического заряда, то есть их равен нулю. Поэтому, зная атомный номер элемента, нельзя однозначно сказать, сколько нейтронов содержится в его ядре. К примеру в ядре атома всегда содержится 6 протонов, однако протонов в нем может быть 6 и 7. Разновидности ядер химического элемента с разным количеством нейтронов в ядре изотопами этого элемента. Изотопы могут быть как природными, так и полученными искусственно.

Ядра атомов обозначают буквенным символом химического элемента из таблицы Менделеева. Справа от символа вверху и внизу стоят два числа. Верхнее число A - это массовое число атома. A = Z+N, где Z - заряд ядра (), а N - число нейтронов. Нижнее число - это Z - заряд ядра. Такая запись дает информацию о количестве нейтронов в ядре. Очевидно, что оно равно N = A-Z.

У разных одного химического элемента число A меняется, что можно увидеть в записи этого изотопа. Определенные изотопы имеют свои оригинальные . Например, обычное ядро не имеет нейтронов и имеет один протон. Изотоп водорода дейтерий имеет один нейтрон (A = 2, цифра 2 сверху, 1 снизу), а изотоп тритий - два нейтрона (A = 3, цифра 3 сверху, 1 снизу).

Зависимость числа нейтронов от числа протонов отражена на так называемой N-Z диаграмме атомных ядер. Устойчивость ядер зависит от отношения числа нейтронов и числа протонов. Ядра нуклидов наиболее устойчивы при N/Z = 1, то есть при равенстве количества нейтронов и протонов. С ростом массового числа область устойчивости сдвигается к величинам N/Z>1, достигая величины N/Z ~ 1,5 для наиболее тяжелых ядер.

Видео по теме

Источники:

  • Строение атомного ядра в 2019
  • как найти количество нейтронов в 2019

Чтобы найти количество протонов в атоме, определите его место в таблице Менделеева. Найдите его порядковый номер в периодической таблице. Он будет равен количеству протонов в атомном ядре. Если исследуется изотоп, посмотрите на пару чисел, описывающие его свойства, нижнее число будет равно количеству протонов. В том случае, если известен заряд атомного ядра, можно узнать количество протонов, поделив его значение на заряд одного протона.

Вам понадобится

  • Для того чтобы найти количество протонов, узнайте значение заряда протона или электрона, возьмите таблицу изотопов, периодическую таблицу Менделеева.

Инструкция

Определение количества протонов известного атома.В том случае, когда известно, какой атом исследуется, найдите его расположение в . Определите его номер в этой таблице, найдя ячейку соответствующего элемента. В данной ячейке найдите порядковый номер элемента, который соответствует изучаемому атому. Этот порядковый номер и будет соответствовать количеству протонов в атомном ядре.

Как найти в изотопе.Многие атомы имеют изотопы, отличающиеся ядер. Именно поэтому только лишь массы ядра недостаточно для однозначного определения атомного ядра. При описании изотопа перед записью его химического обозначения всегда записывается пара чисел. Верхнее число показывает массу атома в атомных единицах массы, а нижнее заряд ядра. Каждая единица заряда ядра в такой записи соответствует одному протону. Таким образом, количество протонов равно нижнему числу в записи данного изотопа.

Как найти протоны, зная заряд ядра.Часто атома зарядом его ядра. Для того чтобы определить количество протонов в нем, необходимо перевести его в кулоны (если он подан в кратных единицах). Затем поделите заряд ядра на модуль . Это связано с тем, что поскольку атом электрически нейтрален, то количество протонов в нем равно количеству . Причем заряды их равны по модулю и противоположны по знаку (протон имеет положительный заряд, электрон – отрицательный). Поэтому заряд ядра атома поделите на число 1,6022 10^(-19) кулон. В результате получится количество протонов. Поскольку измерения заряда атома недостаточно точны, в том случае, если при делении получилось число, округлите его до целого.

Видео по теме

Источники:

  • протонное число в 2019

Атомы состоят из субатомных частиц - протонов, нейтронов и электронов. Протоны представляют собой положительно заряженные частицы, которые находятся в центре атома, в его ядре. Вычислить число протонов изотопа можно по атомному номеру соответствующего химического элемента.

Модель атома

Для описания свойств атома и его структуры используется модель, известная под названием «Модель атома по Бору». В соответствии с ней структура атома напоминает солнечную систему - тяжелый центр (ядро) находится в центре, а более легкие частицы движутся по орбите вокруг него. Нейтроны и протоны образуют положительно заряженное ядро, а отрицательно заряженные электроны движутся вокруг центра, притягиваясь к нему электростатическими силами.

Элементом называют вещество, состоящее из атомов одного типа, он определяется числом протонов в каждом из них. Элементу присваивают свое имя и символ, например, водород (H) или кислород (О). Химические свойства элемента зависят от числа электронов и, соответственно, числа протонов, содержащихся в атомах. Химические характеристики атома не зависят от числа нейтронов, так как не имеют электрического заряда. Однако их число влияет на стабильность ядра, изменяя общую массу атома.

Изотопы и число протонов

Изотопами называют атомы отдельных элементов с различным числом нейтронов. Данные атомы химически идентичным, однако обладают разной массой, также они отличаются своей способностью испускать излучение.

Атомный номер (Z) - это порядковый номер химического элемента в периодической системе Менделеева, он определяется числом протонов в ядре. Каждый атом характеризуется атомным номером и массовым числом (А), которое равно суммарному числу протонов и нейтронов в ядре.

Элемент может иметь атомы с различным числом нейтронов, но количество протонов остается неизменным и равно числу электронов нейтрального атома. Для того, чтобы определить, сколько протонов содержится в ядре изотопа, достаточно посмотреть на его атомный номер. Число протонов равно номеру соответствующего химического элемента в периодической таблице Менделеева.

Примеры

В качестве примера можно рассмотреть изотопы водорода. В природе

  • Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.
  • Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.
  • Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.
  • Основные типы химической связи. Ковалентная связь. Основные положения метода валентных связей. Общее представление о методе молекулярных орбиталей.
  • Два механизма образования ковалентной связи: обычный и донорно-акцепторный.
  • Ионная связь как предельный случай поляризации ковалентной связи. Электростатическое взаимодействие ионов.
  • 11.Металлические связи. Металлические связи как предельный случай делокализации валентных электронных орбиталей. Кристаллические решетки металлов.
  • 12. Межмолекулярные связи. Взаимодействия Ван-дер-Ваальса – дисперсионное, диполь-дипольное, индуктивное). Водородная связь.
  • 13. Основные классы неорганических соединений. Оксиды металлов и неметаллов. Номенклатура этих соединений. Химические свойства основных, кислотных и амфотерных оксидов.
  • 14. Основания.Номенклатура оснований. Химические свойства оснований. Амфотерные основания, реакции их взаимодействия с кислотами и щелочами.
  • 15. Кислоты.Бескислородные и кислородные кислоты. Номенклатура (название кислот). Химические свойства кислот.
  • 16. Соли как продукты взаимодействия кислот и оснований. Типы солей: средние (нормальные), кислые, основные, оксосоли, двойные, комплексные соли. Номенклатура солей. Химические свойства солей.
  • 17. Бинарные соединения металлов и неметаллов. Степени окисления элементов в них. Номенклатура бинарных соединений.
  • 18. Типы химических реакций: простые и сложные, гомогенные и гетерогенные, обратимые и необратимые.
  • 20. Основные понятия химической кинетики. Скорость химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных процессах.
  • 22. Влияние температуры на скорость химической реакции. Энергия активации.
  • 23. Химическое равновесие. Константа равновесия, ее зависимость от температуры. Возможность смещения равновесия химической реакции. Принцип Ле-Шателье.
  • 1)Кислота – сильный электролит.
  • 36. А) Стандартный водородный электрод. Кислородный электрод.
  • 37. Уравнение Нернста для расчета электродных потенциалов электродных систем различных типов. Уравнение Нернста для водородного и кислородного электродов
  • 3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.
  • I – величина тока
  • 49. Кислотно-основной метод титрования.Расчеты по закону эквивалентов. Методика титрования. Мерная посуда в титриметрическом методе
    1. Атом. Представление о строении атома. Электроны, протоны, нейтроны

    Атом - элементарная частица вещества (хим. элемента), состоящая из определенного набора протонов и нейтронов (ядро атома), и электронов.

    Ядро атома состоит из протонов (p+) и нейтронов (n0). Число протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов). Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А.Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-). Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

    1. Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел, их трактовка и допустимые значения

    Атом – микромир, в котором действуют законы квантовой механики.

    Волновой процесс движения электрона в атоме вокруг ядра описывается с помощью волновой функции пси (ψ), которая должна иметь три параметра квантования (3 степени свободы).

    Физический смысл – трехмерная амплитуда эл. волны.

    n– главное квантовое число, характ. энергетич. уровень в атоме.

    l– побочное (орбитальное к.ч.)l=0…n-1, характеризует энергетич. подуровни в атоме и форму атомной орбитали.

    m l – магнитное к.ч.ml= -l… +l, характеризует ориентацию элемента в м.п.

    ms- спиновое число. Исп. Т.к. каждый электрон имеет свой момет движения

    1. Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.

    Пр. Гунда : заполнение происходит последовательно таким образом, чтобы сумма спиновых чисел (момент движения) было максимально.

    Принцип Паули : в атоме не может быть 2х эл., у которых все 4 квант. Числа были бы одинаковы

    Х n – макс кол-во эл. на энерг. ур.

    Начиная с 3его периода наблюдается эффект запаздывания, который объясняется принципом наименьшей энергии: формирование электронной оболочки атома происходит таким образом, что эл. занимают энергетически выгодное положение, когда энергия связи с ядром максимально возможна, а собственная энергия электрона – минимально возможна.

    Пр. Кличевского – наиболее энергетически выгодны те подур., у кот. сумма квантовых чиселnиlстремится к мин.

    1. Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.

    Энергия ионизации атома - Энергия, необходимая для отрыва электрона от невозбужденного атома, называется первой энергией (потенциалом) ионизации.

    Сродство к электрону - Энергетический эффект присоединения электрона к нейтральному атому называется сродством к электрону (Е).

    Энергия ионизации возрастает в периодах от щелочных металлов к благородным газами уменьшается в группах сверху вниз.

    Для элементов главных подгрупп сродство к электрону возрастает в периодах слева направои уменьшается в группах сверху вниз.

    1. Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.

    Электроотрицательность – способность атома хим.эл. в соединении притягивать к себе электроны

    Методы оценки:

    ЭО=I+E(кДж/моль) - полусумма энергий ионизации и сродства(по Маликену)

    Относительная шкала по Полингу

    Используя относ шкалу э.о. и приняв э.о. F= 4в периоде с увеличением заряда ядра э.о. увелич. и увелич немет. св-ва.

    В группе увеличение заряда ядра сопровождается уменьшение э.о. и усиление мет. св-в

    Степень окисления (окислительное число) – воображаемый заряд атома электронного соединения, который определяется из предположения, что соединение состоит из ионов

    С.о. простых веществ =0

    С.о кислорода = -2 (искл. Пероксиды H2O2(-1) и соединения со фтором)

    С.о. водорода и щелочных металлов = +1

    Отриц С.о. имеют только немет и только одну

    В любом ионе алгебраич сумма всех с.о. = заряду иона, а в нейтральных молекулах = 0

    Если хим соед сост из мет и немет, то мет +, немет –

    Если хим соед сост из 2х немет, то отриц с.о. имеет тот, у кот > э.о.

      Периодический закон и периодическая система элементов Д.И.Менделеева. Периоды, группы и подгруппы периодической системы. Связь периодической системы со строением атомов. Электронные семейства элементов.

    формулировка периодического закона такова:

    «свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

    Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

    Вертикальные столбцы таблицы называют группами . Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.

    В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне).

    Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

    Горизонтальные ряды таблицы называют периодами . Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n - одинаково).