Теоремы чевы и менелая на егэ. Теоремы чевы и менелая

ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

Теорема Чевы

Большинство замечательных точек треугольника могут быть по­лучены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A 1 , на стороне BC (или её про­должении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B 1 , C 1 на двух других сторонах треугольника (в нашем примере еще две середи­ны сторон). Если правило выбора удачное, то прямые AA 1 , BB 1 , CC 1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).

Хотелось бы иметь какой-нибудь общий метод, позво­ляющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.

Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева .

Определение. Отрезки, соеди­няющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.

Возможны два варианта расположения чевиан. В одном варианте точка


пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи).

Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А 1 , В 1 , С 1 , такие, что прямые АА 1 , ВВ 1 , СС 1 пересекаются в некоторой общей точке, тогда

.

Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB 1 и секущей CC 1 (точку пересечения чевиан обозначим Z ):

,

а второй раз для треугольника B 1 BC и секущей AA 1 :

.

Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.

Теорема 4. (Обратная теорема Чевы) . Если для выбранных на сторонах треугольника ABC или их продолжениях точек A 1 , В 1 и C 1 выполняется условие Чевы:

,

то прямые AA 1 , BB 1 и CC 1 пересекаются в одной точке .

Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.

Рассмотрим примеры применения прямой и обратной теорем Чевы.

Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.

Решение. Рассмотрим соотношение

для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.

Теорема (теорема Чевы) . Пусть точки лежат на сторонах и треугольника соответственно. Пусть отрезки и пересекаются в одной точке. Тогда

(обходим треугольник по часовой стрелке).

Доказательство. Обозначим через точку пересечения отрезков и . Опустим из точек и перпендикуляры на прямую до пересечения с ней в точках и соответственно (см. рисунок).


Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. и :

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем

и

Перемножим эти три равенства:

что и требовалось доказать.

Про медианы:

1. Разместим в вершинах треугольника ABC единичные массы.
2. Центр масс точек A и B находится посередине AB. Центр масс всей системы должен находиться на медиане к стороне AB, так как центр масс треугольника ABC - это центр масса центра масс точек A и B, и точки C.
(запутанно получилось)
3. Аналогично - ЦМ должен лежать на медиане к сторонам AC и BC
4. Так как ЦМ - единственная точка, то, следовательно все эти три медианы должны пересекаться в ней.

Кстати, сразу же следует, что пересечением они делятся в отношении 2:1. Так как масса центра масс точек A и B равна 2, а масса точки C равна 1, следовательно, общий центр масс согласно теореме о пропорции будет делить медиану в отношении 2/1.

Спасибо большое, доступно изложено, думаю, будет не лишним представить док-во и при помощи методов геометрии масс, например:
Прямые AA1 и CC1 пересекаются в точке O; AC1: C1B = p и BA1: A1C = q. Нужно доказать, что прямая BB1 проходит через точку O тогда и только тогда, когда CB1: B1A = 1: pq.
Поместим в точки A, B и C массы 1, p и pq соответственно. Тогда точка C1 является центром масс точек A и B, а точка A1 - центром масс точек B и C. Поэтому центр масс точек A, B и C с данными массами является точкой O пересечения прямых CC1 и AA1. С другой стороны, точка O лежит на отрезке, соединяющем точку B с центром масс точек A и C. Если B1 - центр масс точек A и C с массами 1 и pq, то AB1: B1C = pq: 1. Остается заметить, что на отрезке AC существует единственная точка, делящая его в данном отношении AB1: B1C.

2. Теорема Чевы

Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой . Таким образом, если в треугольнике ABC X , Y и Z - точки, лежащие на сторонах BC , CA , AB соответственно, то отрезки AX , BY , CZ являются чевианами. Этот термин происходит от имени итальянского математика Джованни Чевы, который в 1678 году опубликовал следующую очень полезную теорему:

Теорема 1.21. Если три чевианы AX, BY, CZ (по одной из каждой вершины) треугольника ABC конкурентны, то

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Рис. 3.

Когда мы говорим, что три прямые (или отрезка) конкурентны , то мы имеем в виду, что все они проходят через одну точку, которую обозначим через P . Для доказательства теоремы Чевы вспомним, что площади треугольников с равными высотами пропорциональны основаниям треугольников. Ссылаясь на рисунок 3, мы имеем:

|BX| |XC| = SABX SAXC = SPBX SPXC = SABX− SPBX SAXC− SPXC = SABP SCAP .

Аналогично,

|CY| |YA| = SBCP SABP , |AZ| |ZB| = SCAP SBCP .

Теперь, если мы перемножим их, то получим

|BX| |XC| · |CY| |YA| · |AZ| |ZB| = SABP SCAP · SBCP SABP · SCAP SBCP =1 .

Теорема, обратная к этой теореме, также верна:

Теорема 1.22. Если три чевианы AX, BY, CZ удовлетворяют соотношению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 ,

то они конкурентны .

Чтобы это показать, предположим, что две первые чевианы пересекаются в точке P , как и прежде, а третья чевиана, проходящая через точку P , будет CZ′ . Тогда, по теореме 1.21,

|BX| |XC| · |CY| |YA| · |AZ′| |Z′B| =1 .

Но по предположению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Следовательно,

|AZ| |ZB| = |AZ′| |Z′B| ,

точка Z′ совпадает с точкой Z , и мы доказали, что отрезки AX , BY и CZ конкурентны (, стр. 54 и , стр, 48, 317).

Применение подобия к доказательству теорем и решению задач (Обобщение теоремы Фалеса. Теоремы Чевы и Менелая.)

1. Введение;

2. Обобщение теоремы Фалеса;

(a) Формулировка;

(b) Доказательство;

3. Теорема о пропорциональных отрезках;

4. Теорема Чевы;

(a) Формулировка;

(b) Доказательство;

5. Теорема Менелая;

(a) Формулировка;

(b) Доказательство;

6. Задачи и их решения;

7. Источники информации;

Введение.

Мой реферат посвящен применению подобия к доказательству теорем и решению задач, а именно глубоко изучить обобщение теоремы Фалеса, теоремы Чевы и Менелая, которые не изучаются в школьной программе. Теме подобия, которая проходится в восьмом классе, отведено всего лишь 19 часов, что недостаточно для изучения этой темы более углубленно. В тему подобия входят: определение подобных треугольников, признаки подобия, отношение площадей подобных треугольников, средняя линия треугольника, пропорциональные отрезки и т.д.

Напомню определение подобных треугольников :

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Оказывается, что у подобных треугольников не только отношение сходственных сторон, но и отношение любых других сходственных отрезков равно коэффициенту подобия. Например, отношение сходственных биссектрис AD и A 1 D 1 , т.е. биссектрис равных углов A и A 1 в подобных треугольниках ABC и A 1 B 1 C 1 , равно коэффициенту подобия k, отношение сходственных медиан AM и A 1 M 1 равно k и точно так же отношение сходственных высот AH и A 1 H 1 равно k.

С помощью данного материала, который изучается в школьной программе, мы можем решать довольно узкий круг задач. При создании своего реферата я собираюсь углубить свои знания по данной теме, что позволит решать более широкий круг задач на пропорциональные отрезки. В этом и заключается актуальность моего реферата.

Одна из теорем – это обобщение теоремы Фалеса. Сама теорема Фалеса проходится в восьмом классе. Но главными теоремами являются теоремы Чевы и Менелая.

Обобщение теоремы Фалеса.

Формулировка:

Параллельные прямые, пересекающие две данные прямые, отсекают на этих прямых пропорциональные отрезки.

Доказать:

=…= .

Доказательство:

Докажем, например, что

Рассмотрим два случая:

1 случай

Прямые a и b параллельны. Тогда четырехугольники А1А2В2В1 и А2А3В3В2 – параллелограммы. Поэтому А1А2=В1В2 и А2А3=В2В3, откуда следует, что

2 случай

Прямые a и b не параллельны. Через точку А1 проведем прямую с, параллельную прямой b. Она пересечет прямые А2В2 и А3В3 в некоторых точках С2 и С3. Треугольники А1А2С2 и А1А3С3подобны по двум углам (угол А1 – общий, углы А1А2С2 и А1А3С3 равны как соответственные при параллельных прямых А2В2 и А3В3 секущей А2А3), поэтому

Отсюда по свойству пропорций получаем:

(1)

С другой стороны, по доказанному в первом случае имеем А1С2=В1В2, С2С3=В2В3. Заменяя в пропорции (1) А1С2 на В1В2 и С2С3 на В2В3, приходим к равенству

(2)

что и требовалось доказать.

Теорема о пропорциональных отрезках в треугольнике.

На сторонах АС и ВС треугольника АВС отмечены точки К и М так, что АК:КС=m:n, BM:MC=p:q. Отрезки АМ и ВК пересекаются в точке О.

Доказать:

Доказательство:

Через точку М проведем прямую, параллельную ВК. Она пересекает сторону АС в точке D, и согласно обобщению теоремы Фалеса

Пусть АК=mx. Тогда в соответствии с условием задачи КС=nx, а так как KD:DC=p:q, то

Снова воспользуемся обобщением теоремы Фалеса:

Аналогично доказывается, что

.

Теорема Чевы.

Теорема названа в честь итальянского математика Джованни Чевы, который доказал её в 1678 году.

Формулировка:

Если на сторонах АВ, ВС и СА треугольника АВС взяты соответственно точки С 1 , А 1 и В 1 , то отрезки АА 1 , ВВ 1 и СС 1 пересекаются в одной точке тогда и только тогда, когда

(3)

Доказать:

(3)

2.отрезки АА1, ВВ1 и СС1 пересекаются в одной точке

Доказательство:

1. Пусть отрезки АА1, ВВ1 и СС1 пересекаются в одной точке О. Докажем, что выполнено равенство (3). По теореме о пропорциональных отрезках в треугольнике имеем:

и .

Левые части этих равенств одинаковы, значит, равны и правые части. Приравнивая их, получаем

.

Разделив обе части на правую часть, приходим к равенству (3).

2. Докажем обратное утверждение. Пусть точки С1, А1 и В1 взяты на сторонах АВ, ВС и СА так, что выполнено равенство (3). Докажем, что отрезки АА1, ВВ1 и СС1 пересекаются в одной точке. Обозначим буквой О точку пересечения отрезков АА1 и ВВ1 и проведем прямую СО. Она пересекает сторону АВ в некоторой точке, которую обозначим С2. Так как отрезки АА1, ВВ1 и СС1 пересекаются в одной точке, то по доказанному в первом пункте

. (4)

Итак, имеют место равенства (3) и (4).

Сопоставляя их, приходим к равенству

= , которое показывает, что точки C1 и C2 делят сторону AB в одном и том же отношении. Следовательно, точки C1 и C2 совпадают, и, значит, отрезки АА1, ВВ1 и СС1 пересекаются в точке O. Теорема доказана.

Теорема Менелая или теорема о полном четырехстороннике известна еще со времен Древней Греции. Название она получила в честь своего автора – древнегреческого математика и астронома Менелая Александрийского (примерно 100 г. н.э.). Эта теорема очень красива и проста, но, к сожалению, в современном школьном курсе ей не уделено должного внимания. А, между тем, она во многих случаях помогает очень легко и изящно решать достаточно сложные геометрические задачи.

Теорема 1 (теорема Менелая) . Пусть ∆ABC пересечен прямой, не параллельной стороне AB и пересекающей две его стороны AC и BC соответственно в точках F и E, а прямую AB в точке D (рис. 1) ,

тогда А F FC * CE EB * BD DA = 1

Примечание. Чтобы легко запомнить эту формулу, можно воспользоваться следующим правилом: двигаться вдоль контура треугольника от вершины до точки пересечения с прямой и от точки пересечения до следующей вершины.

Доказательство. Из вершин A, B, C треугольника проведем соответственно три параллельные прямые до пересечения с секущей прямой. Получим три пары подобных треугольников (признак подобия по двум углам). Из подобия треугольников вытекают следующие равенства

А теперь перемножим данные полученные равенства:

Теорема доказана.

Чтобы ощутить всю прелесть данной теоремы, попробуем решить предложенную ниже геометрическую задачу двумя разными способами: используя вспомогательное построение и с помощью теоремы Менелая .

Задача 1.

В ∆ABC биссектриса AD делит сторону BC в отношении 2: 1. В каком отношении медиана CE делит эту биссектрису?

Решение.

С помощью вспомогательного построения :

Пусть S – точка пересечения биссектрисы AD и медианы CE. Достроим ∆ASB до параллелограмма ASBK. (рис. 2)

Очевидно, что SE = EK, так как точка пересечения параллелограмма делит диагонали пополам. Рассмотрим теперь треугольники ∆CBK и ∆CDS. Нетрудно заметить, что они подобны (признак подобия по двум углам: и как внутренние односторонние углы при параллельных прямых AD и KB и секущей CB). Из подобия треугольника вытекает следующее:

Используя условие, получим:

CB CD = CD + DB CD = CD + 2CD CB = 3CD CD = 3

Теперь заметим, что KB = AS, как противолежащие стороны параллелограмма. Тогда

AS SD = KB SD = CB CD = 3

С помощью теоремы Менелая .

Рассмотрим ∆ABD и применим к нему теорему Менелая (прямая, проходящая через точки C, S, E – секущая прямая):

BE EA * AS SD * DC CB = 1

По условию теоремы имеем BE/EA = 1 , так как CE – медиана, а DC/CB = 1/3, как мы уже подсчитали ранее.

1 * AS SD * 1 3 = 1

Отсюда получаем AS/SD = 3 На первый взгляд оба решения достаточно компактны и примерно равноценны. Однако, идея дополнительного построения для школьников часто оказывается очень сложна и совсем не очевидна, тогда как, зная теорему Менелая, ему достаточно лишь правильно ее применить.

Рассмотрим еще одну задачу, в которой очень изящно работает теорема Менелая.

Задача 2.

На сторонах AB и BC ∆ABC даны соответственно точки M и N такие, что выполняются следующие равенства

AM MB = CN NA = 1 2

В каком соотношении точка S пересечения отрезков BN и CM делит каждый из этих отрезков (рис. 3)?

Решение.

Рассмотрим ∆ABN. Применим теорему Менелая для этого треугольника (прямая, проходящая через точки M, S, C – секущая прямая)

AM MB * BC SN * CN CA = 1

Из условия задачи имеем: AM MB = 1 2

NC CA = NC CN + NA = NC CN + 2NC = NC 3 NC = 1 3

Подставим эти результаты и получим:

1 2 * BS SN * 1 3 = 1

Отсюда BS/SN = 6. А, значит, точка S пересечения отрезков BN и CM делит отрезок BN в отношении 6: 1.

Рассмотрим ∆ACM. Применим теорему Менелая для этого треугольника (прямая, проходящая через точки N, S, B – секущая прямая):

AN NC * CS SM * MB BA = 1

Из условия задачи имеем: AN NC = 2

MB BA = MB BM + MA = 2MA 2MA + MA = 2MB 3MA = 2 3

Подставим эти результаты и получим:

2 * CS SM * 2 3 = 1

Отсюда CS/SM = 3/4

А, значит, точка S пересечения отрезков BN и CM делит отрезок CM в отношении 3: 4.

Справедлива и обратная теорема к теореме Менелая. Она часто оказывается еще более полезной. Особенно хорошо она работает в задачах на доказательства. Нередко с ее помощью красиво, легко и быстро решаются даже олимпиадные задачи.

Теорема 2 (Обратная теорема Менелая). Пусть дан треугольник ABC и точки D, E, F принадлежат соответственно прямым BC, AC, AB (отметим, что они могут лежать как на сторонах треугольника ABC, так и на их продолжениях) (рис. 4) .

Тогда, если AF FC * CE EB * BD DA = 1

то точки D, E, F лежат на одной прямой.

Доказательство. Докажем теорему методом от противного. Предположим, что соотношение из условия теоремы выполняется, но точка F не лежит на прямой DE (рис. 5).

Обозначим точку пересечения прямых DE и AB буквой O. Теперь применим теорему Менелая и получим: AE EC * CD DB * BO OA = 1

Но, с другой стороны, равенство BF FA = BO OA

не может выполняться.

Поэтому соотношение из условия теоремы не может быть выполнено. Получили противоречие.

Теорема доказана.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Математика – 10 класс Мендель Виктор Васильевич, декан факультета естественных наук, математики и информационных технологий ДВГГУ ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ Особое место в планиметрии отведено двум замечательным теоремам: теореме Чевы и теореме Менелая. Эти теоремы не включены в базовую программу курса геометрии средней школы, но их изучение (и применение) рекомендуется всем, кто интересуется математикой чуть больше, чем это возможно в рамках школьной программы. Чем же интересны эти теоремы? Сначала отметим, что при решении геометрических задач продуктивно сочетаются два подхода: - один основан на определении базовой конструкции (например: треугольник – окружность; треугольник – секущая прямая; треугольник – три прямых, проходящих через его вершины и пересекающиеся в одной точке; четырехугольник с двумя параллельными сторонами и т.п.), - а второй – метод опорных задач (простых геометрических задач, к которым сводится процесс решения сложной задачи). Так вот, теоремы Менелая и Чевы относятся к наиболее часто встречающимся конструкциям: первая рассматривает треугольник, стороны или продолжения сторон которого пересечены некоторой прямой (секущей), во второй речь идет о треугольнике и трех прямых, проходящих через его вершины, пересекающиеся в одной точке. Теорема Менелая Эта теорема наблюдающуюся (вместе для с обратной) отношений показывает отрезков, закономерность, соединяющих вершины некоторого треугольника и точки пересечения секущей со сторонами (продолжениями сторон) треугольника. На чертежах приведены два возможных случая расположения треугольника и секущей. В первом случае секущая пересекает две стороны треугольника и продолжение третьей, во втором – продолжения всех трех сторон треугольника. Теорема 1. (Менелая) Пусть ABC пересечен прямой, не параллельной стороне АВ и пересекающей две его стороны АС и ВС соответственно в точках В1 и А1, а прямую АВ в точке С1 тогда AB1 CA1 BC1    1. B1C A1B C1 A Теорема 2. (обратная теореме Менелая) Пусть в треугольнике АВС точки А1, В1, С1 принадлежит прямым ВС, АС, АВ соответственно, тогда, если AB1 CA1 BC1   1 B1C A1B C1 A , то точки А1, В1, С1 лежат на одной прямой. Доказательство первой теоремы можно провести так: на секущую прямую опускают перпендикуляры из всех вершин треугольника. В результате получают три пары подобных прямоугольных треугольников. Фигурирующие в формулировке теоремы отношения отрезков заменяют на отношения перпендикуляров, соответствующих им по подобию. Оказывается, что каждый отрезок – перпендикуляр в дробях будет присутствовать дважды: один раз в одной дроби в числителе, второй раз, в другой дроби, в знаменателе. Таким образом, произведение всех этих отношений окажется равным единице. Обратная теорема доказывается методом «от противного». Предполагается, что при выполнении условий теоремы 2 точки А1, В1, С1 не лежат на одной прямой. Тогда прямая А1В1 пересечет сторону АВ в точке С2, отличной от точки С1. При этом, в силу теоремы 1, для точек А1, В1, С2 будет выполняться то же отношение, что и для точек А1, В1, С1. Из этого следует, что точки С1 и С2 поделят отрезок AB в одинаковых отношениях. Тогда эти точки совпадут – получили противоречие. Рассмотрим примеры применения теоремы Менелая. Пример 1. Доказать, что медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершины. Решение. Запишем полученное в теореме соотношение, Менелая для треугольника ABMb и прямой McM(C): AM c BM M bC    1. M c B MM b CA Первая дробь в этом произведении очевидно равна 1, а третья второе отношение равно 1 . Поэтому 2 2:1, что и требовалось доказать. Пример 2. Секущая пересекает продолжение стороны AC треугольника ABC в точке B1 так, что точка C является серединой отрезка AB1. Сторону AB эта секущая делит пополам. Найдите, в каком отношении она делит сторону BC? Решение. Запишем для треугольника и секущей произведение трех отношений из теоремы Менелая: AB1 CA1 BC1    1. B1C A1B C1 A Из условий задачи следует, что первое отношение равно единице, а третье 1 , 2 таким образом, второе отношение равно 2, т.е., секущая делит сторону BC в отношении 2:1. Следующий пример применения теоремы Менелая мы встретим, когда будем рассматривать доказательство теоремы Чевы. Теорема Чевы Большинство замечательных точек треугольника могут быть получены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A1, на стороне BC (или её продолжении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B1, C1 на двух других сторонах треугольника (в нашем примере еще две середины сторон). Если правило выбора удачное, то прямые AA1, BB1, CC1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке). Хотелось бы иметь какой-нибудь общий метод, позволяющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет. Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева. Определение. Отрезки, соединяющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке. Возможны два варианта расположения чевиан. В одном варианте точка пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи). Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1, такие, что прямые АА1, ВВ1, СС1 пересекаются в некоторой общей точке, тогда BA1 CB1 AC1   1 CA1 AB1 BC1 . Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB1 и секущей CC1 (точку пересечения чевиан обозначим Z): AC1 BZ B1C    1, C1B ZB1 CA а второй раз для треугольника B1BC и секущей AA1: B1Z BA1 CA    1. ZB A1C AB1 Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы. Теорема 4. (Обратная теорема Чевы). Если для выбранных на сторонах треугольника ABC или их продолжениях точек A1, В1 и C1 выполняется условие Чевы: BA1 CB1 AC1   1 CA1 AB1 BC1 , то прямые AA1, BB1 и CC1 пересекаются в одной точке. Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая. Рассмотрим примеры применения прямой и обратной теорем Чевы. Пример 3. Докажите, что медианы треугольника пересекаются в одной точке. Решение. Рассмотрим соотношение AC1 BA1 CB1   C1B A1C B1 A для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке. Задачи для самостоятельного решения Предлагаемые здесь задачи являются контрольной работой №1 для учащихся 9 классов. Решите эти задачи, запишите решения в отдельную (от физики и информатики) тетрадь. Укажите на обложке следующую информацию о себе: 1. Фамилия, имя, класс, профиль класса (например: Пупкин Василий,9 кл., математический) 2. Индекс, адрес места жительства, электронная почта (если есть), телефон (домашний или мобильный) 3. Данные о школе (например: МБОУ №1 п. Бикин) 4. Фамилия, И. О. учителя математики (например: учитель математики Петрова М.И.) Рекомендуется решить не менее четырех задач. М 9.1.1. Может ли секущая прямая из теоремы Менелая разрезать стороны треугольника (или их продолжения) на отрезки длиной: а) 3, 3, 5, 7,10, 14; в) 3, 5, 6, 7, 7, 10, Если такие варианты возможны, приведите примеры. Отрезки могут идти в разном порядке. М 9.1.2. Могут ли внутренние чевианы треугольника делить его стороны на отрезки: а) 3, 3, 5, 7,10, 14; в) 3, 5, 6, 7, 7, 10, Если такие варианты возможны, приведите примеры. Отрезки могут идти в разном порядке. Указание: придумывая примеры не забудьте проверить неваенство треугольника. М 9.1.3. Используя обратную теорему Чевы докажите, что: а) биссектрисы треугольника пересекаются в одной точке; б) отрезки, соединяющие вершины треугольника с точками на противоположных сторонах, в которых эти стороны касаются вписанной окружности, пересекаются в одной точке. Указания: а) вспомните, в каком отношении биссектриса делит противоположную сторону; б) используйте свойство, что отрезки двух касательных, проведенные из одной точки к некоторой окружности, равны. М 9.1.4. Завершите доказательство теоремы Менелая, начатое в первой части статьи. М 9.1.5. Докажите, что высоты треугольника пересекаются в одной точке, используя обратную теорему Чевы. М 9.1.6. Докажите теорему Симпсона: из произвольной точки M, взятой на описанной вокруг треугольника ABC окружности, на стороны или продолжения сторон треугольника опущены перпендикуляры, докажите, что основания этих перпендикуляров лежат на одной прямой. Указание: используйте обратную теорему Менелая. Попробуйте выразить длины отрезков, используемых в отношениях, через длины перпендикуляров, проведенных их точки M. Также полезно вспомнить свойства углов вписанного четырехугольника.